Функции нервная система человека: Функции нервной системы — Студопедия

Содержание

Функции нервной системы — Студопедия

Нервная система в организме человека выполняет следующие функции:

1. Обеспечивает взаимосвязь между органами и системами путем быстрой и точной передачи информации и ее интеграции.

2. Обеспечивает функционирование организма как единого целого и его взаимодействие с внешней средой.

3. Осуществляет прием и анализ разнообразных сигналов внешней и внутренней среды и формирует ответные реакции.

4. Осуществляет следующие психические функции:

— осознание сигналов окружающего мира,

— их запоминание,

— принятие решения и организация целенаправленного поведения,

— абстрактное мышление,

— речь.

Общий план строения и классификация нервной системы

Вся нервная система построена из нервной ткани, в состав которой входят высокоспециализированные нервные клетки, называемые нейронами и вспомогательные клетки — нейроглии.

Топографически нервную систему человека подразделяют на центральную и периферическую. К центральной нервной системе относят спинной и головной мозг. Периферическая нервная система образована нервными узлами (спинно-мозговыми, черепными и вегетативными), нервами (31 пара спинно-мозговых и 12 пар черепных) и нервными окончаниями, рецепторами (чувствительными) и эффекторами. Каждый нерв состоит из нервных волокон, миелинизированных и немиелинизированных.

По анатомо-функциональной классификации единую нервную систему также условно подразделяют на две части: соматическую (цереброспинальную) и вегетативную (автономную). Соматическая нервная система обеспечивает иннервацию главным образом тела (сому), кожи, скелетных мышц. Этот (соматический) отдел нервной системы устанавливает взаимоотношения с внешней средой, воспринимает ее воздействия (прикосновение, осязание, боль, температуру), формирует осознанные (управляемые сознанием) сокращения скелетных мышц (защитные и другие движения).



Вегетативная (автономная) нервная система иннервирует все внутренние органы (пищеварения, дыхания, мочеполовой аппарат), железы, гладкую мускулатуру органов, сердце, регулирует обменные процессы, рост и размножение.

Автономную (вегетативную) нервную систему на основании строения, топографии вегетативных ядер в спинном и головном мозге, а также особенностей функции, подразделяют на симпатическую и парасимпатическую части. Обе эти части вегетативной нервной системы действуют на одни и те же внутренние органы, не противоборствуя, а создавая более оптимальный режим их работы.


В зависимости от жизненных обстоятельств, от величины функциональных нагрузок вегетативная нервная система или усиливает функции тех или иных внутренних органов, включая работу сердца, или ослабляет их. При этом в каждый момент в соответствии с потребностями организма большую активность в отношении внутренних органов проявляет или симпатическая, или парасимпатическая части вегетативной нервной системы. Что касается остальных органов и тканей (опорно-двигательного аппарата, кожи с их структурными элементами, стенок сосудов и некоторых других), то все обменные процессы в них регулирует симпатическая часть вегетативной нервной системы.

Координацию работы всех отделов вегетативной нервной системы осуществляют гипоталамус промежуточного мозга и кора большого мозга.

Нейрон как структурная и функциональная единица нервной системы

Нейрон — это основная структурная и функциональная единица нервной системы. Нейроном называют нервную клетку с отростками.

В нем различают тело клетки, или сому, один длинный, мало ветвящийся отросток — аксон — и много (от 1 до 1000) коротких, сильно ветвящихся отростков — дендритов (рис. 3А). Длина аксона достигает метра и более, его диаметр колеблется от сотых долей микрона до 10 мкм; длина дендрита может достигать 300 мкм, а его диаметр — 5 мкм.

Аксон, выходя из сомы клетки, постепенно суживается, от него отходят отдельные отростки — коллатерали. На протяжении первых 50-100 мкм от тела клетки аксон не покрыт миелиновой оболочкой. Прилегающий к нему участок тела клетки называют аксонным холмиком. Участок аксона, не покрытый миелиновой оболочкой, вместе с аксонным холмиком называют начальным сегментом аксона. Эти участки отличаются рядом морфологических и функциональных особенностей.

По дендритам возбуждение поступает от рецепторов или других нейронов к телу клетки, а аксон передает возбуждение от тела нейрона к другому или рабочему органу. На дендритах имеются боковые отростки (шипики), которые увеличивают их поверхность и являются местами наибольших контактов с другими нейронами. Конец аксона сильно ветвится, один аксон может контактировать с 5 тыс. нервных клеток и создавать до 10 тыс. контактов. Место контакта одного нейрона с другим получило название синапса (от греческого слова «синапто» — контактировать).

По внешнему виду синапсы имеют форму пуговки, луковицы, петли и др. Количество синаптических контактов неодинаково на теле и отростках нейрона и очень вариабельно в различных отделах центральной нервной системы. Тело нейрона на 38 % покрыто синапсами, и их насчитывают до 1200-1800 на одном нейроне. Много синапсов на дендритах и шипиках, их количество невелико на аксонном холмике. Все нейроны центральной нервной системы соединяются друг с другом в основном в одном направлении: разветвления аксона одного нейрона контактируют с телом клетки и дендритами другого нейрона.

Тело нервной клетки в различных отделах нервной системы имеет разную величину (диаметр его колеблется от 4 до 130 мкм) и форму (округлую, уплощенную, многоугольную, овальную). Оно покрыто сложно устроенной мембраной и содержит органеллы, свойственные любой другой клетке. В теле находятся ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппарат Гольджи, эндоплазматическая сеть и др.

Характерной особенностью строения нервной клетки является наличие гранулярного ретикулума с большим количеством рибосом и нейрофибрилл. С рибосомами в нервных клетках связывают высокий уровень обмена веществ, синтез белка и РНК. Нейрофибриллы представляют собой тончайшие волоконца, пересекающие тело клетки во всех направлениях и продолжающиеся в отростки и участвующие в проведении нервных импульсов (рис. 3Б).

В ядре содержится генетический материал — дезоксирибонуклеиновая кислота (ДНК), которая регулирует состав РНК сомы нейрона. РНК в свою очередь определяет количество и тип белка, синтезируемого в нейроне.

А

Б

Рис. 3. Структура нервной клетки:

А — Строение нервной клетки: 1 — дендрит, 2 — тело клетки,
3 — ядро,4 — аксон, 5 — миелиновое волокно, 6 — ветви аксона,
7 — перехват, 8 — неврилемма;

Б — нейрофибриллы в двигательной клетке спинного мозга

Нейроны различают по строению и функции. По строению (в зависимости от количества отходящих от тела клетки отростков) различают униполярные (с одним отростком), биполярные (с двумя отростками) и мультиполярные (с множеством отростков) нейроны.

По функциональным свойствам выделяют афферентные (или центростремительные) нейроны, несущие возбуждение от рецепторов в центральную нервную систему, эфферентные, двигательные, мотонейроны (или центробежные), передающие возбуждение из центральной нервной системы к иннервируемому органу, и вставочные, контактные или промежуточные нейроны, соединяющие между собой афферентные и эфферентные пути.

Афферентные нейроны относятся к униполярным, их тела лежат в спинно-мозговых ганглиях. Отходящий от тела клетки отросток Т-образно делится на две ветви, одна из которых идет в центральную нервную систему и выполняет функцию аксона, а другая подходит к рецепторам и представляет собой длинный дендрит.

Большинство эфферентных и вставочных нейронов относится к мультиполярным. Мультиполярные вставочные нейроны в большом количестве располагаются в задних рогах спинного мозга, находятся и во всех других отделах центральной нервной системы. Они могут быть и биполярными, как например, нейроны сетчатки, имеющие короткий ветвящийся дендрит и длинный аксон. Мотонейроны располагаются в основном в передних рогах спинного мозга.

Нейроглия находятся между нейронами и составляет межклеточное вещество нервной ткани. В состав глии входят клетки с отростками и без отростков и волокна, являющиеся либо отростками клеток, либо самостоятельными образованиями, называемыми глиофибриллами. Клетки нейроглии в нервной системе располагаются по-разному: находятся в белом веществе мозга, на значительном расстоянии покрывают клетки спинного мозга, идут вдоль определенной стороны нервной клетки, являясь спутниками нервных клеток.

В некоторых отделах мозга они располагаются вдоль сосудов и обладают способностью к фагоцитозу. Установлено, что нейроглия имеет отношение к обмену веществ в нервной ткани. Нейроглия располагаясь вдоль сосудов, обеспечивает питание нейронов. Клетки нейроглии выстилают спинно-мозговой канал и желудочки мозга и участвуют в секреции спинно-мозговой жидкости: клетки, обладающие длинными отростками, участвуют в образование опорных структур вокруг тел нейронов; клетки, лишенные отростков, соединяясь друг с другом, образуют оболочки нервных волокон; мелкие клетки образуют небольшие скопления в головном мозге и выполняют защитные функции.

Некоторые клетки нейроглии выделяют вещества, влияющие на состояние возбудимости нервных клеток. Отмечено, что при разных психических состояниях изменяется секреция этих клеток. С функциональным состоянием нейроглии связывают длительные следовые процессы в центральной нервной системе.

На ранних стадиях развития нервная клетка характеризуется большой величиной ядра, которое окружено небольшим количеством цитоплазмы. Такая клетка носит название аполярного нейробласта. В процессе развития с увеличением размеров клетки уменьшается относительный объем ядра. На третьем месяце внутриутробного развития в аксоплазме появляются нейрофибриллы, и одновременно начинается рост аксона нервной клетки. Аксон растет по направлению к периферии вплоть до конечного органа мышцы или железы. Во время развития аксона происходит его погружение в шванновскую клетку и образование миелиновой оболочки.

Растущий аксон на конце имеет колбу роста. Синапс центральной нервной системы образуется в результате контакта колбы роста одного нейрона с телом другого. Колба роста превращается в пресинаптическое образование. На первом этапе развития синапса дифференцируются мембраны, затем в пресинаптическом отделе образуются митохондрии и везикулы, количество которых быстро увеличивается.

Постепенно увеличивается синаптическая щель и утолщаются мембраны синапса. Функциональная деятельность нейрона начинается с того момента, когда аксон достигает органа. Проведение возбуждения в нейронах центральной нервной системы обнаружено с момента образования синапса со всеми его компонентами. Дендриты вырастают значительно позже аксона. Сначала на противоположном аксону полюсе клетки появляется верхушечный дендрит в виде простого выроста аксоплазмы, вследствие чего нейробласт становится биполярным.

Затем вырастают дендриты со всех сторон, и нейробласт становится мультиполярным. Способность проводить возбуждение у дендрита появляется значительно позже, чем у аксона (аксон функционирует во внутриутробном периоде развития ребенка, а дендрит — после рождения), В процессе развития увеличивается число ветвлений дендрита. Шипики на дендритах появляются после рождения ребенка. В коре больших полушарий их количество возрастает вместе с увеличением числа условно-рефлекторных связей.

Строение, свойства и возрастные изменения нервных волокон

Нервным волокном называют отросток нервной клетки, покрытый оболочками. Центральную часть любого отростка нервной клетки (аксона или дендрита) называют осевым цилиндром. Осевой цилиндр располагается в аксоплазме и состоит из тончайших волокон — нейрофибрилл и покрыт оболочкой — аксолеммой.

При рассмотрении под электронным микроскопом установлено, что каждая нейрофибрилла состоит из еще более тонких волокон разного диаметра, имеющих трубчатое строение. Трубочки диаметром до 0,03 мкм называют нейротубулями, а диаметром до 0,01 мкм — нейрофиламентами. По нейротубулям и нейрофиламентам поступают к нервным окончаниям вещества, образующиеся в теле клетки и служащие для передачи нервного импульса.

В аксоплазме содержатся митохондрии, количество которых особенно велико в окончаниях волокон, что связывают с передачей возбуждения с аксона на другие клеточные структуры. В аксоплазме мало рибосом и РНК, чем объясняется низкий уровень обмена веществ в нервном волокне.

Аксон покрыт миелиновой оболочкой до места его разветвления у иннервируемого органа, которая располагается вдоль осевого цилиндра не сплошной линией, а сегментами длиной 0,5—2 мм. Пространство между сегментами (1-2 мкм) называют перехватом Ранвье. Миелиновая оболочка образуется шванновскими клетками путем их многократного обкручивания вокруг осевого цилиндра. Каждый ее сегмент образован одной шванновской клеткой, скрученной в сплошную спираль.

В области перехватов Ранвье миелиновая оболочка отсутствует, и концы шванновских клеток плотно прилегают к аксолемме. Наружная мембрана шванновских клеток, покрывающая миелин, образует самую верхнюю оболочку нервного волокна, которую называют шванновской оболочкой или неврилеммой. Шванновским клеткам придают особое значение, их считают клетками-спутниками, которые дополнительно обеспечивают обмен веществ в нервном волокне. Они принимают участие в процессе регенерации нервных волокон.

Различают мякотные, или миелиновые, и безмякотные, или безмиелиновые, нервные волокна. К миелиновым относят волокна соматической нервной системы и некоторые волокна вегетативной нервной системы. Безмякотные волокна отличаются тем, что в них не развивается миелиновая оболочка и их осевые цилиндры покрыты только шванновскими клетками (шванновской оболочкой). К ним относится большинство волокон вегетативной нервной системы.

Свойства нервных волокон. В организме возбуждение проводится по нервам, в состав которых входит большое количество различных по строению и функции нервных волокон.

Основные свойства нервных волокон заключаются в следующем: связь с телом клетки, высокая возбудимость и лабильность, невысокий уровень обмена веществ, относительная неутомляемость, большая скорость проведения возбуждения (до 120 м/с). Миелинизация нервных волокон осуществляется в центробежном направлении, отступая несколько микрон от тела клетки к периферии нервного волокна. Отсутствие миелиновой оболочки ограничивает функциональные возможности нервного волокна. Реакции возможны, но они диффузные и слабо координированы.

По мере развития миелиновой оболочки возбудимость нервного волокна постепенно повышается. Раньше других начинают миелинизироваться периферические нервы, затем волокна спинного мозга, стволовой части головного мозга, мозжечка и позже — больших полушарий головного мозга. Миелинизация спинно-мозговых и черепно-мозговых нервов начинается на четвертом месяце внутриутробного развития. Двигательные волокна покрыты миелином к моменту рождения. Большинство смешанных и центростремительных нервов миелинизируются к трем месяцам после рождения, некоторые — к трем годам.

Проводящие пути спинного мозга хорошо развиты к моменту рождения и почти все миелинизированы. Не заканчивается миелинизация только пирамидных путей. Скорость миелинизации черепно-мозговых нервов различна; большинство из них миелинизируются к 1,5-2 годам. Миелинизация нервных волокон головного мозга начинается во внутриутробном периоде развития и заканчивается после рождения. Несмотря на то, что к трем годам в основном заканчивается миелинизация нервных волокон, рост в длину миелиновой оболочки и осевого цилиндра продолжается и после трехлетнего возраста.

Строение синапса. Механизм передачи возбуждения в синапсах

Синапс состоит из пресинаптического и постсинаптического отделов, между которыми имеется небольшое пространство, получившее название синоптической щели (рис. 4).

 
 

Рис. 4. Межнейрональный синапс:

1 — аксон; 2 — синаптические пузырьки; 3 — синаптическая щель;

4 — хеморецепторы постсинаптической мембраны; 5 — поссинаптическая мембрана; 6 — синаптическая бляшка; 7 — митохондрия

Благодаря электронно-микроскопической технике исследования обнаружены синаптические контакты между различными образованиями нейронов. Синапсы, образованные аксоном и телом (сомой) клетки, называют аксосоматическими, аксоном и дендритом аксодендритическими. В последнее время изучены контакты между аксонами двух нейронов — они получили название аксо-аксональных синапсов. Соответственно контакты между дендритами двух нейронов называют дендро-дендритическими синапсами.

Синапсы между окончанием аксона и иннервируемым органом (мышцей) получили название нервно-мышечных синапсов или концевых пластинок. Пресинаптический отдел синапса представлен конечной веточкой аксона, которая на расстоянии 200-300 мкм от контакта теряет миелиновую оболочку. В пресинаптическом отделе синапса содержится большое количество митохондрий и пузырьков (везикул) округлой или овальной формы размером от 0,02 до 0,05 мкм.

В везикулах содержится вещество, способствующее передаче возбуждения с одного нейрона на другой, которое называют медиатором. Везикулы концентрируются вдоль поверхности пресинаптического волокна, находящейся против синаптической щели, ширина которой равна 0,0012-0,03 мкм. Постсинаптический отдел синапса образуется мембраной сомы клетки или ее отростков, а в концевой пластинке — мембраной мышечного волокна.

Пресинаптическая и постсинаптическая мембраны имеют специфические особенности строения, связанные с передачей возбуждения: они несколько утолщены (их диаметр около 0,005 мкм). Длина этих участков составляет 150-450 мкм. Утолщения могут быть сплошными и прерывистыми. Постсинаптическая мембрана у некоторых синапсов складчатая, что увеличивает поверхность соприкосновения ее с медиатором. Аксо-аксональные синапсы имеют строение, подобное аксо-дендритическим, в них везикулы располагаются в основном с одной (пресинаптической) стороны.

Механизм передачи возбуждения в концевой пластинке. В настоящее время представлено много доказательств химической природы передачи импульса и изучен ряд медиаторов, т. е. веществ, способствующих передаче возбуждения с нерва на рабочий орган или с одной нервной клетки на другую.

В нервно-мышечных синапсах, в синапсах парасимпатической нервной системы, в ганглиях симпатической нервной системы, в ряде синапсов центральной нервной системы медиатором является ацетилхолин. Эти синапсы названы холинэргическими.

Обнаружены синапсы, в которых передатчиком возбуждения является адреналиноподобное вещество; они названы адреналеэгическими. Выделены и другие медиаторы: гаммааминомасляная кислота (ГАМК), глютаминовая и др.

Прежде всего было изучено проведение возбуждения в концевой пластинке, так как она более доступна для исследования. Последующими экспериментами было установлено, что в синапсах центральной нервной системы осуществляются аналогичные процессы. Во время возникновения возбуждения в пресинаптической части синапса увеличивается количество везикул и скорость их движения. Соответственно увеличивается количество ацетилхолина и фермента холинацетилазы, способствующего его образованию.

При раздражении нерва в пресинаптической части синапса одновременно разрушается от 250 до 500 везикул, соответственно выделяется в синаптическую щель такое же количество квантов ацетилхолина. Это связано с влиянием, ионов кальция. Его количество в наружной среде (со стороны щели) в 1000 раз больше, чем внутри пресинаптического отдела синапса. Во время деполяризации увеличивается проницаемость пресинаптической мембраны для ионов кальция. Они входят в пресинаптическое окончание и способствуют вскрытию везикул, обеспечивая выход ацетилхолина в синаптическую щель.

Выделившийся ацетилхолин диффундирует к постсинаптической мембране и действует на участки, особенно к нему чувствительные,— холинорецепторы, вызывая возбуждение в постсинаптической мембране. На проведение возбуждения через синаптическую щель затрачивается около 0,5 м/с.

Это время получило название синаптической задержки. Оно слагается из времени, в течение которого происходит освобождение ацетилхолина, диффузии его от пресинаптической мембраны к постсинаптической и воздействия на холинорецепторы. В результате действия ацетилхолина на холинорецепторы открываются поры постсинаптической мембраны (мембрана разрыхляется и становится на короткое время проницаемой для всех ионов).

При этом в постсинаптической мембране возникает деполяризация. Одного кванта медиатора достаточно для того, чтобы слабо деполяризовать мембрану и вызвать потенциал амплитудой 0,5 мВ. Такой потенциал называют миниатюрным потенциалом концевой пластинки (МПКП). При одновременном освобождении 250-500 квантов ацетилхолина, т. е. 2,5-5 млн молекул, наступает максимальное увеличение числа миниатюрных потенциалов.

Нервная система — что это такое? Какие функции у нервной системы?

Нервная система занимает главное положение в нашем организме. Она помогает нам чувствовать и ощущать звуки, запахи, боль, температуру. Мы спасаем себя в сложных ситуациях благодаря реакции нервной системы.

Нервная система – это связанные между собой нервные структуры, обеспечивающие регуляцию всего организма человека и взаимодействие его с окружающей средой.

Нервными структурами являются головной и спинной мозг, нервы и нервные окончания. Они образованы от нервной ткани, которая, в свою очередь, состоит из нервных клеток – нейронов и нейроглии. Нейроглия – это клетки, которые окружают и защищают нейроны, а также дают им питательные вещества.

Отделы нервной системы

Нервная система делится на:

  • центральную (ЦНС) – к ней относятся головной и спинной мозг – центры управления человеческим телом;

  • периферическую (ПНС) — включает в себя нервные окончания и нервы.

По выполняемым задачам нервная система подразделяется на:

  • соматическую, регулирующую мышцы тела и органы чувств;

  • вегетативную, управляющую деятельностью внутренних органов.

Соматическая нервная система подчинена воле человека. Например, мы по своему желанию можем задержать дыхание, закрыть глаза, поднять руку.

Вегетативная система является автономной – человек не может управлять работой внутренних органов, не способен силой воли остановить сердце или движение крови по сосудам.

Вегетативная нервная система разделяется еще на две части:

  • Симпатическая система включается во время интенсивной работы или в критической ситуации. Выделяются гормоны адреналин и норадреналин, что приводит к учащенному дыханию и сердцебиению, расширению зрачков и сужению сосудов (кроме сосудов мозга и сердца), уменьшению слюноотделения.

  • Парасимпатическая система противоположна, она помогает восстановлению запасов энергии во время сна и отдыха.

Функции нервной системы

Нервная система выполняет множество функций, без которых невозможна жизнь человека:

  • объединяет все части организма в единое целое;

  • согласует работу всех органов;

  • поддерживает связь человека с внешней средой;

  • адаптирует организм к меняющимся условиям среды и помогает выживать в них;

  • контролирует сон, голод, насыщение, дыхание, биение сердца;

  • управляет эмоциями, обучаемостью, движениями, равновесием, координацией;

  • переводит всю информацию, получаемую от органов чувств, в нервный импульс и дает ответ на него: например, если ярко светит солнце, мы щуримся;

  • регулирует работу всех внутренних органов.

Рефлекс – основной принцип работы нервной системы

Рефлекс – это ответная реакция организма на раздражение. Это действие происходит при участии нервной системы.

Рефлексы разделяются на два типа:

Безусловные рефлексы являются врожденными и передаются по наследству. Сохраняются в течении всей жизни. К ним относят:

  • пищевые – при поступлении пищи в полость рта выделяется слюна. Сюда относятся глотание и сосательные движения новорожденного;

  • половые – половое влечение и половой процесс;

  • защитные – отдёргивание руки от горячего предмета, чихание, кашель;

  • ориентировочные – попадая в новую обстановку, человек поворачивает голову, вращает глазами, прислушивается.

Появляются эти рефлексы сразу – на первое действие раздражителя.

Условные рефлексы приобретаются в течении жизни, они исчезают, если их не поддерживать. У каждого человека они индивидуальны и не передаются по наследству.

Например, если некоторое время подряд перед приемом пищи звонить в колокольчик, то в будущем только на один звук колокольчика будет выделяться слюна, так как организм помнит, что за этим звуком следует пища.

Нервная система человека — строение, функции, работа

Нервная система человека является стимулятором работы мышечной системы, о которой мы говорили в предыдущей статье. Как мы уже знаем, мышцы нужны для передвижения частей тела в пространстве, и мы даже изучили конкретно, какие мышцы для какой работы предназначены. Но что приводит мышцы в действие? Что и как заставляет их работать? Об этом и пойдет речь в данной статье, из которой вы почерпнете необходимый теоретический минимум для освоения темы, обозначенной в названии статьи.

Введение

Прежде всего, стоит сообщить, что нервная система предназначена для передачи информации и команд нашего тела. Основные функции нервной системы человека – это восприятие изменений внутри тела и окружающего его пространства, интерпретация этих изменений и ответ на них в виде определенной формы (в т. ч. – мышечного сокращения).

Нервная система – множество разных, взаимодействующих между собой нервных структур, обеспечивающая наряду с эндокринной системой координированное регулирование работы большей части систем организма, а также отклик на смену условий внешней и внутренней среды. Данная система объединяет в себе сенсибилизацию, двигательную активность и корректное функционирование таких систем, как эндокринная, иммунная и не только.

Строение нервной системы

Возбудимость, раздражимость и проводимость характеризуются как функции времени, то есть это – процесс, возникающий от раздражения до появления ответной реакции органа. Распространение нервного импульса в нервном волокне происходит за счет перехода локальных очагов возбуждения на соседние неактивные области нервного волокна. Нервная система человека обладает свойством трансформации и генерации энергий внешней и внутренней среды и преобразования их в нервный процесс.

нервная система человека

Строение нервной системы человека: 1- плечевое сплетение; 2- кожно-мышечный нерв; 3- лучевой нерв; 4- срединный нерв; 5- подвздошно-подчревный нерв; 6- бедренно-половой нерв; 7- запирающий нерв; 8- локтевой нерв; 9- общий малоберцовый нерв; 10- глубокий малоберцовый нерв; 11- поверхностный нерв; 12- мозг; 13- мозжечок; 14- спинной мозг; 15- межреберные нервы; 16- подреберный нерв; 17- поясничное сплетение; 18- крестцовое сплетение; 19- бедренный нерв; 20- половой нерв; 21- седалищный нерв; 22- мышечные ветви бедренных нервов; 23- подкожный нерв; 24- большеберцовый нерв

Нервная система функционирует как единое целое с органами чувств и управляется головным мозгом. Самая крупная часть последнего называется большими полушариями (в затылочной области черепа находятся два более мелких полушария мозжечка). Головной мозг соединяется со спинным. Правое и левое большие полушария соединены между собой компактным пучком нервных волокон, называемых мозолистым телом.

Спинной мозг – основной нервный ствол тела – проходит через канал, образованный отверстиями позвонков, и тянется от головного мозга до крестцового отдела позвоночника. С каждой стороны спинного мозга симметрично отходят нервы к различным частям тела. Осязание в общих чертах обеспечивается определенными нервными волокнами, бесчисленные окончания которых находятся в коже.

Классификация нервной системы

Так называемые виды нервной системы человека можно представить следующим образом. Всю целостную систему условно формируют: центральная нервная система – ЦНС, в состав которой входит головной и спинной мозг, и периферическая нервная система – ПНС, в которую входят многочисленные нервы, отходящие от головного и спинного мозга. Кожа, суставы, связки, мышцы, внутренние органы и органы чувств отправляют по нейронам ПНС входные сигналы в ЦНС. В то же время, исходящие сигналы от центральной НС, периферическая НС посылает к мышцам. В качестве наглядного материала, ниже, логически структурированным образом представлена целостная нервная система человека (схема).

строение нервной системы человека

Центральная нервная система – основа нервной системы человека, которая состоит из нейронов и их отростков. Главная и характерная функция ЦНС – реализация различных по степени сложности отражательных реакций, имеющих название рефлексов. Низшие и средние отделы ЦНС – спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок – управляют деятельностью отдельных органов и систем организма, реализуют между ними связь и взаимодействие, обеспечивают целостность организма и его корректное функционирование. Высший отдел ЦНС – кора больших полушарий головного мозга и ближайшие подкорковые образования – по большей части управляет связью и взаимодействием организма как целостной структуры с внешним миром.

Периферическая нервная система – является условно выделяемой частью нервной системы, которая находится за пределами головного и спинного мозга. Включает в себя нервы и сплетения вегетативной нервной системы, соединяя ЦНС с органами тела. В отличие от ЦНС, ПНС не защищена костями и может быть подвержена воздействию механических повреждений. В свою очередь, саму периферическую нервную систему делят на соматическую и вегетативную.

  • Соматическая нервная система – часть нервной системы человека, которая представляет собой комплекс чувствительных и двигательных нервных волокон, отвечающих за возбуждение мышц, и в том числе кожи и суставов. Также она руководит координацией движений тела, и получением и передачей внешних стимулов. Эта система выполняет действия, которыми человек управляет осознанно.
  • Вегетативную нервную систему делят на симпатическую и парасимпатическую. Симпатическая нервная система управляет ответной реакцией на опасности или стресс, и кроме прочего, может вызвать увеличение частоты сердечных сокращений, повышение кровяного давления и возбуждение органов чувств, за счет увеличения уровня адреналина в крови. Парасимпатическая нервная система, а свою очередь, управляет состоянием покоя, и регулирует сокращение зрачков, замедление сердечного ритма, расширение кровеносных сосудов и стимуляцию пищеварительной и мочеполовой системы.

отделы нервной системы человека

Выше вы можете видеть логически структурированную схему, на которой приведены отделы нервной системы человека, в порядке, соответствующем вышеизложенному материалу.

Строение и функции нейронов

нервная клеткаВсе движения и упражнения контролируются нервной системой. Основной структурной и функциональной единицей нервной системы (как центральной, так и периферической) является нейрон. Нейроны – это возбудимые клетки, которые способны генерировать и передавать электрические импульсы (потенциалы действия).

Строение нервной клетки: 1- тело клетки; 2- дендриты; 3- ядро клетки; 4- миелиновая оболочка; 5- аксон; 6- окончание аксона; 7- синаптическое утолщение

Функциональной единицей нейромышечной системы является двигательная единица, которая состоит из двигательного нейрона и иннервируемых им мышечных волокон. Собственно, работа нервной системы человека на примере процесса иннервации мышц происходит следующим образом.

Клеточная мембрана нерва и мышечного волокна является поляризованной, то есть на ней существует разность потенциалов. Внутри клетки содержится высокая концентрация ионов калия (К), а снаружи – ионов натрия (Na). В покое разность потенциалов между внутренней и внешней стороной клеточной мембраны не приводит к возникновению электрического заряда. Эта определенная величина представляет собой потенциал покоя. Из-за изменений во внешнем окружении клетки потенциал на ее мембране постоянно колеблется, и если он возрастает, и клетка достигает своего электрического порога возбуждения, происходит резкое изменение электрического заряда мембраны, и она начинает проводить потенциал действия вдоль аксона к иннервируемой мышце. К слову, в крупных мышечных группах, один двигательный нерв может иннервировать до 2-3 тысяч мышечных волокон.

На схеме ниже вы можете видеть пример того, какой путь проходит нервный импульс от момента возникновения стимула до получения на него ответной реакции в каждой, отдельно взятой системе.

работа нервной системы

Нервы соединяются между собой посредством синапсов, а с мышцами – с помощью нервно-мышечных контактов. Синапс – это место контакта между двумя нервными клетками, а нервно-мышечный контакт – процесс передачи электрического импульса от нерва к мышце.

что такое синаптическая связь

Синаптическая связь: 1- нейронный импульс; 2- принимающий нейрон; 3- ветвь аксона; 4- синаптическая бляшка; 5- синаптическая щель; 6- молекулы нейотрансмиттера; 7- клеточные рецепторы; 8- дендрит принимающего нейрона; 9- синаптические пузырьки

что такое нервно-мышечный контакт

Нервно-мышечный контакт: 1- нейрон; 2- нервное волокно; 3- нервно-мышечный контакт; 4- двигательный нейрон; 5- мышца; 6- миофибриллы

Таким образом, как мы уже говорили – процесс физической активности в целом и мышечного сокращения в частности является полностью подконтрольным нервной системе.

Заключение

Сегодня мы узнали о предназначении, строении и классификации нервной системы человека, а так же о том, как она связана с его двигательной активностью и как она влияет на работу всего организма в целом. Поскольку нервная система вовлечена в регуляцию деятельности всех органов и систем человеческого тела, в том числе, и возможно, в первую очередь – сердечно – сосудистой, то в следующей статье из цикла о системах организма человека, к ее рассмотрению мы и перейдем.

Нервная система

Этапы развития нервной системы

В эволюции нервная система претерпела несколько этапов развития, которые стали поворотными пунктами в качественной организации её деятельности. Эти этапы отличаются по количеству и видам нейрональных образований, синапсов, признакам их функциональной специализации, по образованию группировок нейронов, связанных между собой общностью функций. Выделяют три основных этапа структурной организации нервной системы: диффузный, узловой, трубчатый.

Диффузная нервная система наиболее древняя, имеется у кишечнополостных (гидра) животных. Такая нервная система характеризуется множественностью связей соседних элементов, что позволяет возбуждению свободно распространяться по нервной сети во все стороны.

Этот тип нервной системы обеспечивает широкую взаимозаменяемость и тем самым большую надёжность функционирования, однако эти реакции имеют неточный, расплывчатый характер.

Узловой тип нервной системы типичен для червей, моллюсков, ракообразных.

Он характерен тем, что связи нервных клеток организованы определённым образом, возбуждение проходит по жёстко определённым путям. Такая организация нервной системы оказывается более ранимой. Повреждение одного узла вызывает нарушение функций всего организма в целом, но она по своим качествам быстрее и точнее.

Трубчатая нервная система характерна для хордовых, она включает в себя черты диффузного и узлового типов. Нервная система высших животных взяла всё лучшее: высокую надёжность диффузного типа, точность, локальность быстроту организации реакций узлового типа.

Ведущая роль нервной системы

На первом этапе развития мира живых существ взаимодействие между простейшими организмами осуществлялось через водную среду первобытного океана, в которую поступали химические вещества, выделяемые ими. Первой древнейшей формой взаимодействия между клетками многоклеточных организм является химическое взаимодействие посредством продуктов обмена веществ, поступающих в жидкости организма. Такими продуктами обмена веществ, или метаболитами, являются продукты распада белков, углекислота и др. это — гуморальная передача влияний, гуморальный механизм корреляции, или связи между органами.

Гуморальная связь характеризуется следующими особенностями:

  • отсутствием точного адреса, по которому направляется химическое вещество, поступающее в кровь или другие жидкости тела;
  • химическое вещество распространяется медленно;
  • химическое вещество действует в ничтожных количествах и обычно быстро разрушается или выводится из организма.

Гуморальные связи являются общими и для мира животных, и для мира растений. На определённой ступени развития мира животных в связи с появлением нервной системы образуется новая, нервная форма связей и регуляций, которая качественно отличает мир животных от мира растений. Чем выше по своему развитию организм животного, тем большую роль играет взаимодействие органов через нервную систему, которое обозначается как рефлекторное. У высших живых организмов нервная система регулирует гуморальные связи. В отличие от гуморальной связи нервная связь имеет точную направленность к определённому органу и даже группе клеток; связь осуществляется в сотни раз с большей скоростью, чем скорость распространения химических веществ. Переход от гуморальной связи к нервной сопровождался не уничтожением гуморальной связи между клетками тела, а подчинением нервным связям и возникновению нервно-гуморальным связям.

На следующем этапе развития живых существ появляются специальные органы — железы, в которых вырабатываются гормоны, образующиеся из поступающих в организм пищевых веществ. Основная функция нервной системы заключается как в регуляции деятельности отдельных органов между собой, так и во взаимодействии организма как единого целого с окружающей его внешней средой. Любое воздействие внешней среды на организм оказывается, прежде всего, на рецепторы (органы чувств) и осуществляется через посредство изменений, вызываемых внешней средой и нервной системой. По мере развития нервной системы высший её отдел — большие полушария головного мозга — становится «распорядителем и распределителем всей деятельности организма».

Строение нервной системы

Нервная система образована нервной тканью, которая состоит из огромного количества нейронов — нервная клетка с отростками.

Нервная система условно подразделяется на центральную и периферическую.

Центральная нервная система включает головной и спинной мозг, а периферическая нервная система — нервы, отходящие от них.

Головной и спинной мозг представляют собой совокупность нейронов. На поперечном разрезе мозга различают белое и серое вещество. Серое вещество состоит из нервных клеток, а белое — из нервных волокон, являющихся отростками нервных клеток. В различных отделах центральной нервной системы расположение белого и серого вещества неодинаково. В спинном мозге серое вещество находится внутри, а белое — снаружи, в головном же (большие полушария, мозжечок), наоборот — серое вещество — снаружи, белое — внутри. В различных отделах головного мозга имеются отдельные скопления нервных клеток (серого вещества), расположенные внутри белого вещества, — ядра. Скопления нервных клеток находятся и за пределами центральной нервной системы. Они называются узлами и относятся к периферической нервной системе.

Рефлекторная деятельность нервной системы

Основной формой деятельности нервной системы является рефлекс. Рефлекс — реакция организма на изменение внутренней или внешней среды, осуществляемая при участии центральной нервной системы в ответ на раздражение рецепторов.

При всяком раздражении возбуждение с рецепторов передаётся по центростремительным нервным волокнам в центральную нервную систему, откуда через вставочный нейрон по центробежным волокнам оно идёт на периферию к тому или иному органу, деятельность которого изменяется. Весь этот путь через центральную нервную систему к рабочему органу, называется рефлекторной дугой образован обычно тремя нейронами: чувствительным, вставочным и двигательным. Рефлекс — сложный акт, в осуществлении которого принимает участие значительно большее количество нейронов. Возбуждение, попадая в центральную нервную систему, распространяется на многие отделы спинного мозга и доходит до головного. В результате взаимодействия многих нейронов осуществляется ответная реакция организма на раздражение.

Спинной мозг

Спинной мозг — тяж длиной около 45 см, диаметром 1 см, находится в канале позвоночника, покрыт тремя мозговыми оболочками: твёрдой, паутинной и мягкой (сосудистой).

Спинной мозг находится в позвоночном канале и представляет собой тяж, который вверху переходит в продолговатый мозг, а внизу заканчивается на уровне второго поясничного позвонка. Спинной мозг состоит из серого вещества, содержащего нервные клетки, и белого, состоящего из нервных волокон. Серое вещество расположено внутри спинного мозга и окружено со всех сторон белым веществом.

На поперечном разрезе серое вещество напоминает букву Н. В нём различают передние и задние рога, а также соединяющую перекладину, в центре которой находится узкий канал спинного мозга, содержащий спинномозговую жидкость. В грудном отделе выделяют боковые рога. В них заложены тела нейронов, иннервирующих внутренние органы. Белое вещество спинного мозга образовано нервными отростками. Короткие отростки соединяют участки спинного мозга, а длинные составляют проводниковый аппарат двусторонних связей с головным мозгом.

Спинной мозг имеет два утолщения — шейное и поясничное, от которых отходят нервы к верхним и нижним конечностям. От спинного мозга отходит 31 пара спинномозговых нервов. Каждый нерв начинается от спинного мозга двумя корешками — передним и задним. Задние корешки — чувствительные состоят из отростков центростремительных нейронов. Их тела расположены в спинномозговых узлах. Передние корешки — двигательные — являются отростками центробежных нейронов расположенных в сером веществе спинного мозга. В результате слияния переднего и заднего корешка образуется смешанный спинномозговой нерв. В спинном мозге сосредоточены центры, регулирующие наиболее простые рефлекторные акты. Основные функции спинного мозга — рефлекторная деятельность и проведение возбуждения.

В спинном мозге человека заложены рефлекторные центры мышц верхних и нижних конечностей, потоотделения и мочеиспускания. Функции проведения возбуждения заключается в том, что через спинной мозг проходят импульсы от головного мозга ко всем областям тела и обратно. По восходящим проводящим путям в головной мозг передаются центростемительные импульсы от органов (кожа, мышцы). По нисходящим путям центробежные импульсы передаются от головного мозга в спинной, затем на периферию, к органам. При повреждении проводящих путей наблюдается потеря чувствительности в различных участках тела, нарушение произвольных сокращений мышц и способности к движению.

Эволюция головного мозга позвоночных

Образование центральной нервной системы в виде нервной трубки впервые появляется у хордовых. У низших хордовых нервная трубка сохраняется в течение всей жизни, у высших — позвоночных — в стадии эмбриона на спинной стороне закладывается нервная пластинка, которая погружается под кожу и сворачивается в трубку. В эмбриональной стадии развития нервная трубка образует в передней части три вздутия — три мозговых пузыря, из которых развиваются отделы мозга: передний пузырь дает передний и промежуточный мозг, средний пузырь превращается в средний мозг, задний пузырь образует мозжечок и продолговатый мозг . Эти пять отделов мозга характерны для всех позвоночных животных.

Для низших позвоночных — рыб и земноводных — характерно преобладание среднего мозга над остальными отделами. У земноводных несколько увеличивается передний мозг и в крыше полушарий образуется тонкий слой нервных клеток — первичный мозговой свод, древняя кора. У рептилий значительно увеличивается передний мозг за счет скоплений нервных клеток. Большую часть крыши полушарий занимает древняя кора. Впервые у рептилий появляется зачаток новой коры. Полушария переднего мозга наползают на другие отделы, вследствие чего образуется изгиб в области промежуточного мозга. Начиная с древних рептилий, полушария головного мозга становятся самым большим отделом головного мозга.

В строении головного мозгаптиц и пресмыкающихся много общего. На крыше головного мозга — первичная кора, хорошо развит средний мозг. Однако у птиц по сравнению с рептилиями возрастают общая масса мозга и относительные размеры переднего мозга. Мозжечок крупный и имеет складчатое строение. У млекопитающих передний мозг достигает наибольшей величины и сложности. Большую часть мозгового вещества составляет новая кора, которая служит центром высшей нервной деятельности. Промежуточный и средний отделы мозга у млекопитающих невелики. Разрастающиеся полушария переднего мозга накрывают их и подминают под себя. У некоторых млекопитающих мозг гладкий, без борозд и извилин, но у большинства млекопитающих в коре мозга имеются борозды и извилины. Появление борозд и извилин происходит вследствие роста мозга при ограниченных размерах черепа. Дальнейший рост коры приводит к появлению складчатости в виде борозд и извилин.

Головной мозг

Если спинной мозг у всех позвоночных животных развит более или менее одинаково, то головной мозг существенно отличатся размерами и сложностью строения у разных животных. Особенно резкие изменения в ходе эволюции претерпевает передний мозг. У низших позвоночных передний мозг развит слабо. У рыб он представлен обонятельными долями и ядрами серого вещества в толще мозга. Интенсивное развитие переднего мозга связано с выходом животных на сушу. Он дифференцируется на промежуточный мозг и на два симметричных полушария, которые называются конечным мозгом. Серое вещество на поверхности переднего мозга (кора) впервые появляется у пресмыкающихся, развиваясь далее у птиц и особенно у млекопитающих. Действительно большими полушариями переднего мозга становятся только у птиц и млекопитающих. У последних они покрывают почти все другие отделы головного мозга.

Головной мозг расположен в полости черепа. В него входят ствол и конечный мозг (кора больших полушарий).

Ствол мозга состоит из продолговатого мозга, варолиева моста, среднего и промежуточного мозга.

Продолговатый мозг является непосредственным продолжением спинного мозга и расширяясь, переходит в задний мозг. Он в основном сохраняет форму и строение спинного мозга. В толще продолговатого мозга расположены скопления серого вещества — ядра черепно-мозговых нервов. В состав заднего моста входят мозжечок и варолиев мост. Мозжечок расположен над продолговатым мозгом и имеет сложное строение. На поверхности полушарий мозжечка серое вещество образует кору, а внутри мозжечка — его ядра. Как и спинной продолговатый мозг выполняет две функции: рефлекторную и проводниковую. Однако рефлексы продолговатого мозга более сложные. Это выражается в важном значении в регуляции сердечной деятельности, состоянии сосудов, дыхания, потоотделения. В продолговатом мозге расположены центры всех этих функций. Здесь же находятся центры жевания, сосания, глотания, отделения слюны и желудочного сока. Несмотря на малую величину (2,5–3 см), продолговатый мозг представляет собой жизненно важный отдел ЦНС. Повреждение его может стать причиной смерти вследствие прекращения дыхания и деятельности сердца. Проводниковая функция продолговатого мозга и варолиева моста заключается в передаче импульсов из спинного мозга в головной и обратно.

В среднем мозге расположены первичные (подкорковые) центры зрения и слуха, которые осуществляют рефлекторные ориентировочные реакции на световые и звуковые раздражения. Эти реакции выражаются в различных движениях туловища, головы и глаз в сторону раздражителей. Средний мозг состоит из ножек мозга и четверохолмия. Средний мозг регулирует и распределяет тонус (напряжение) скелетных мышц.

Промежуточный мозг состоит из двух отделов — таламус и гипоталамус, каждый из которых состоит из большого числа ядер зрительных бугров и подбугровой области. Через зрительные бугры центростремительные импульсы передаются к коре больших полушарий от всех рецепторов тела. Ни один центростремительный импульс, откуда бы он ни шёл, не может пройти к коре, минуя зрительные бугры. Таким образом, через промежуточный мозг осуществляется связь всех рецепторов с корой больших полушарий. В подбугровой области расположены центры, оказывающие влияние на обмен веществ, терморегуляцию и железы внутренней секреции.

Мозжечок находится позади продолговатого мозга. Он состоит из серого и белого вещества. Однако в отличие от спинного мозга и ствола серое вещество — кора — находится на поверхности мозжечка, а белое вещество расположено внутри, под корой. Мозжечок координирует движения, делает их чёткими и плавными, играет важную роль в сохранении равновесия тела в пространстве, а также оказывает влияние на тонус мышц. При поражении мозжечка у человека наблюдается падение тонуса мышц, расстройство движений и изменение походки, замедляется речь и т.д. Однако через некоторое время движения и мышечный тонус восстанавливаются благодаря тому, что неповреждённые участки центральной нервной системы берут на себя функции мозжечка.

Большие полушария — наиболее крупный и развитый отдел головного мозга. У человека они образуют основную массу головного мозга и по всей своей поверхности покрыты корой. Серое вещество покрывает полушария снаружи и образует кору головного мозга. Кора полушарий человека имеет толщину от 2 до 4 мм и слагается из 6–8 слоёв, образованных 14–16 млрд. клеток, различных по форме, величине и выполняемым функциям. Под корой находится белое вещество. Оно состоит из нервных волокон, связывающих кору с расположенными ниже отделами центральной нервной системы и отдельные доли полушарий между собой.

Кора головного мозга имеет извилины, разделённые бороздами, которые значительно увеличивают её поверхность. Три самые глубокие борозды делят полушария на доли. В каждом полушарии различают четыре доли: лобную, теменную, височную, затылочную. Возбуждение разных рецепторов поступают в соответствующие воспринимающие участки коры, называемые зонами, и отсюда передаются к определённому органу, побуждая его к действию. В коре выделяют следующие зоны. Слуховая зона расположена в височной доле, воспринимает импульсы от слуховых рецепторов.

Зрительная зона лежит в затылочной области. Сюда поступают импульсы от рецепторов глаза.

Обонятельная зона находится на внутренней поверхности височной доли и связана с рецепторами носовой полости.

Чувствительно-двигательная зона расположена в лобной и теменной долях. В этой зоне находятся главные центры движения ног, туловища, рук, шеи, языка и губ. Здесь же лежит и центр речи.

Полушария головного мозга — это высший отдел центральной нервной системы, контролирующий работу всех органов у млекопитающих. Значение больших полушарий у человека заключается ещё и в том, что они представляют собой материальную основу психической деятельности. И.П.Павлов показал, что в основе психической деятельности лежат физиологические процессы, происходящие в коре головного мозга. Мышление связано с деятельностью всей коры головного мозга, а не только с функцией отдельных её областей.

Отдел головного мозга Функции
Продолговатый мозг Проводниковая Связь спинного и вышележащих отделов головного мозга.
Рефлекторная

Регуляция деятельности дыхательной, сердечно-сосудистой, пищеварительной систем:

  • пищевые рефлексы, рефлексы слюноотделения, глотания;
  • защитные рефлексы: чиханье, моргание, кашель, рвота.
Варолиев мост Проводниковая Соединяет полушария мозжечка между собой и с корой больших полушарий головного мозга.
Мозжечок Координационная Координация произвольных движений и сохранение положения тела в пространстве. Регуляция мышечного тонуса и равновесия
Средний мозг Проводниковая Ориентировочные рефлексы на зрительные, звуковые раздражители (повороты головы и туловища).
Рефлекторная
  • Регуляция мышечного тонуса и позы тела;
  • координация сложных двигательных актов (движения пальцев и рук) и т.д.
Промежуточный мозг

таламус

  • сбор и оценка поступающей информации от органов чувств, передача в кору больших полушарий головного мозга наиболее важной информации;
  • регуляция эмоционального поведения, болевых ощущений.

гипоталамус

  • контролирует работу желёз внутренней секреции, сердечно-сосудистой системы, обмен веществ (жажда, голод), температуру тела, сон и бодрствование;
  • придаёт поведению эмоциональную окраску (страх, ярость, удовольствие, недовольство)

Кора больших полушарий

Поверхность коры больших полушарий у человека составляет около 1500 см2, что во много раз превышает внутреннюю поверхность черепа. Такая большая поверхность коры образовалась благодаря развитию большого количества борозд и извилин, в результате чего большая часть коры (около 70%) сосредоточена в бороздах. Самые большие борозды больших полушарий — центральная, которая проходит поперёк обоих полушарий, и височная, отделяющая височную долю от остальных. Кора больших полушарий, несмотря на малую толщину (1,5–3 мм) имеет очень сложное строение. В ней насчитывают шесть основных слоёв, которые отличаются строением, формой и размерами нейронов и связями. В коре находятся центры всех чувствительных (рецепторных) систем, представительства всех органов и частей тела. В связи с этим к коре подходят центростремительные нервные импульсы от всех внутренних органов или частей тела, и она может управлять их работой. Через кору больших полушарий происходит замыкание условных рефлексов, посредством которых организм постоянно, в течение всей жизни очень точно приспосабливается к изменчивым условиям существования, к окружающей среде.

Нервная система: строение и функции

Понятия «нервы» и «нервная система» мы употребляем довольно часто и по самому разному поводу. Кто-то нам все нервы испортил, а кто-то их постоянно треплет, хорошо тем, у кого нервная система устойчивая. И часто вспоминаем слова из песенки: «Разговор на эту тему портит нервную систему». А многие ли понимают суть этих понятий? Как показал небольшой опрос среди моих знакомых и студентов-первокурсников, предложение объяснить, что такое «нервная система», поставило многих в тупик. Вряд ли ответ: «Нервная система находится в голове», – можно считать удовлетворительным.

Что такое нервная система

Простейшие живые организмы, например амебы, никакой нервной системы не имеют. У них нет специализированных органов – процессы питания, размножения, контакта со средой и т. д. осуществляются одной и той же клеткой.

Но эволюция – это развитие организмов по пути их усложнения. И чем более сложным становится существо, тем больше появляется у него органов, которые специализируются на выполнении разных функций. Этот процесс нужно как-то контролировать, подчинить общей для всего организма цели. Не менее важно и сохранять опыт взаимодействия со средой, чтобы потом его использовать по необходимости. То есть требуется единый координационный центр, которым и становится нервная система, формирующаяся в процессе эволюции у высокоразвитых существ.

Нервная система (НС) – это комплекс разнообразных структур, которые обеспечивают функционирование и взаимодействие всех частей организма. И чем сложнее этот организм и его контакты с внешним миром, тем сложнее НС. Самая сложная она у человека, как у наиболее высокоорганизованного существа на планете Земля. Основные элементы нашей нервной системы – центральная и периферическая НС, связанные друг с другом многочисленными нервными волокнами. Обеспечивают работу всей этой сложной конструкции специализированные нервные клетки – нейроны. Вот обо всем этом мы сейчас поговорим подробнее.

Центральная нервная система

ЦНС напоминает главный процессор, который управляет всеми функциями организма. Она принимает и обрабатывает сигналы, поступающие как из внешнего мира, так и от органов, мышц, связок, рецепторов и т. д. Обработанные сигналы становятся основой обратной связи – рефлекторных реакций, возникающих по команде «главного процессора», и осознанных действий, поступков. Именно центральная нервная система отправляет команды сердцу, легким, желудочно-кишечному тракту, речевому аппарату, двигательным нервам и многим-многим другим системам.

ЦНС состоит из двух основных отделов – головного и спинного мозга.

Строение и функции головного мозга

Мозг – это очень сложный механизм, состоящий из нескольких отделов. Это результат длительной эволюции, поэтому сформировались его отделы в разное время и отвечают за выполнение задач разного уровня сложности. Самым молодым является верхний слой мозга, состоящий преимущественно из серого вещества – нейронов. Это кора больших полушарий.

Полушария головного мозга и их работа

Если посмотреть на мозг сверху, то он напоминает ядро грецкого ореха. Во-первых, из-за того, что разделен на две части, словно перетянут ниткой. Во-вторых, поверхность мозга такая же сморщенная, как грецкий орех. Это из-за того, что новая кора больших полушарий (неокортекс) значительно больше самих полушарий, и если ее растянуть, то площадь составит около 2 м2. Хотя толщина неокортекса не превышает 4 мм, но нейронов в коре головного мозга насчитывается не менее 14 млрд. Представляете, сколько нервных связей между ними может возникнуть.

Наряду с нейронами (серым веществом) за работу мозга отвечает множество других клеток, в том числе глиальных. Они защищают нейроны, обеспечивают им поставку питания и выводят продукты метаболизма.

Полушария головного мозга специализированы. Левое отвечает за работу органов правой половины тела, а правое – соответственно курирует деятельность того, что у нас находится слева. Кроме этого, в левом полушарии находится центр речи, оно отвечает за операции со знаками (счет, письмо) и за рациональное, логическое мышление. А правое полушарие содержит центр образного мышления, оно управляет способностями человека к воображению и творчеству.

Кора больших полушарий имеет сложное строение. Выделяют следующие зоны:

  • лобные доли;
  • теменные доли;
  • височные доли;
  • затылочные доли.

Разные зоны связаны с различными системами и видами психической деятельности и выполняют свои функции. Так, лобные доли играют главную роль в мышлении. Это самый «человеческий» отдел головного мозга еще и потому, что лобные доли оказывают тормозящее действие на поведение, делают его более осознанным, контролируемым. Они-то и страдают в первую очередь при алкогольном опьянении. Ну, и еще мозжечок, который отвечает за равновесие тела.

Таким образом, кора больших полушарий является источником того, что называют высшими психическими функциями, то есть мышления, операции со знаками, воображения и речевой деятельности.

Под верхним, сравнительно тонким слоем неокортекса, покрывающим большие полушария, находится еще два слоя:

  • Лимбическая система, включающая часть древней коры, играет важную роль в первичной обработке поступающих в мозг сигналов. Еще в лимбической системе, точнее в гипоталамусе, находится центр удовольствия и управления сексуальным поведением.
  • R-комплекс или «мозг рептилии», самая древняя часть нашего мозга, сформировавшаяся более 100 млн лет назад. Эта область управляет примитивными рефлексами и древнейшими инстинктами, такими как инстинкт размножения, защита своей территории, стремление доминировать.

Большие полушария – самая известная часть головного мозга, но он имеет значительно более сложную структуру.

Структура головного мозга

гормоны мозга

Полушария, покрытые слоем коры и соединенные мозолистым телом, называют большим или конечным мозгом. Кроме него, есть и другие отделы:

  • Промежуточный мозг, включающий таламус, эпиталамус и гипоталамус, является фильтром, пропускающим только необходимую информацию.
  • Средний мозг регулирует процессы восприятия, в первую очередь, слуховые и зрительные рефлексы. Именно здесь возникают образы увиденных нами объектов.
  • Продолговатый мозг – один из древних отделов, отвечающий за дыхание и работу сердца. Его повреждение смертельно опасно.
  • Задний мозг, который включает в себя мозжечок и мост, соединяющий головной мозг со спинным и обеспечивающий прохождение сигналов от периферической нервной системы и обратно. Мозжечок отвечает за координацию движений.

Столь сложное строение мозга – результат длительной эволюции. Это пульт управления всем нашим организмом, поэтому природа постаралась надежно защитить мозг от возможных повреждений, спрятав его за прочной черепной коробкой.

Спинной мозг

Второй отдел ЦНС устроен более просто, да и происхождение его более древнее. Однако роль спинного мозга в управлении нашим организмом не стоит недооценивать.

Спинной мозг похож на шнур шириной около 10 мм и длиной порядка 45 см. Он тоже хорошо защищен и проходит в специальном канале позвоночника. Центральная часть спинного мозга образована серым веществом, то есть теми же нейронами, которые обеспечивают работу головного мозга. Оболочка спинного мозга состоит из белого вещества проводящих нервных волокон – аксонов.

Спинной мозг выполняет функцию доставки сигналов от головного мозга к органам и мышцам. Также этот отдел ЦНС обеспечивает ряд простейших, но очень важных рефлексов, в первую очередь двигательных. Например, когда мы отдергиваем руку от горячей сковородки, команду отдает спинной мозг. А еще благодаря этому мозгу мы можем ходить, танцевать, кататься на велосипеде, то есть усваивать двигательные навыки.

Периферическая нервная система

рефлексы

От головного и спинного мозга ко всем органам, мышцам и связкам протянулись нервные волокна, составляющие разветвленную нервную сеть, опутывающую весь наш организм. Этот комплекс нервных волокон и нервных узлов называется периферической нервной системой. Главная ее задача – поддержание двусторонней связи между центральной нервной системой и всеми частями нашего тела.

Скопления чувствительных нервных клеток – рецепторы – принимают информацию из внешнего мира или от внутренних органов. Затем по принимающим нервным волокнам (афферентным) эта информация отправляется для обработки в спинной и головной мозг. Если нужна самая примитивная, но быстрая реакция (отдергивание руки), то срабатывает спинной мозг и направляет нервный импульс к мышцам. Если же требуется более сложная обработка информации и принятие решения, то сигнал поступает в головной мозг, где принимается решение и направляется команда к мышцам и связкам.

Например, на столе лежит конфета. Мы ее видим, то есть сигнал попадает на чувствительные нервные окончания зрительного рецептора, затем по афферентным нервам импульс достигает зрительного отдела головного мозга, возникает образ, мозг его осмысливает, принимает решение и отдает команду. Этот сигнал уже по передающим (эфферентным) нервным волокнам достигает мышц руки, и рука хватает конфету. Все очень просто и в то же время неимоверно сложно, так как является результатом обмена нервными импульсами между миллионами нервных клеток, разнообразных биохимических реакций, активности разных отделов головного и спинного мозга.

Периферическая нервная система бывает двух типов:

  • Вегетативная, отвечающая за работу желез, сосудов и всех внутренних органов.
  • Соматическая, управляющая мышцами, рефлекторными и автоматическими движениями.

Периферическая нервная система, в отличие от центральной, практически ничем не защищена, поэтому и страдает чаще. Например, при простуде и механических повреждениях. Разнообразные невралгии – это довольно распространенные заболевания, доставляющие много неприятных ощущений.

Нейроны и их роль в нервной системе

Как бы ни было сложно устройство нервной системы, ключевую роль в ней играют крошечные нервные клетки – нейроны. Именно из них состоит серое вещество головного и спинного мозга, они ежесекундно обрабатывают миллионы сигналов, принимают информацию из окружающего мира и сохраняют ее, они составляют нервные волокна, которые обеспечивают связь ЦНС со всеми элементами и частями нашего организма.

Только в головном мозге насчитывается порядка 1011 нервных клеток, каждая из которых может установить до 20 000 связей с другими нейронами. Поэтому утверждение, что оперативная мощность и память мозга взрослого человека намного превышает возможности современного компьютера, это совсем не преувеличение.

Каждая нервная клетка, помимо оболочки и ядра, имеет отростки. Один длинный отросток – аксон – отвечает за передачу сигналов, а множество коротких – дендритов – за их прием. Во время прохождения импульса между аксоном одной нервной клетки и дендритом другой возникает биохимическая реакция и появляется белковая молекула – нейротрансмиттер, выполняющий роль «мостика».

Место соединения аксона и дендрита называется синапс. Именно здесь в белковых молекулах синапсов, как считают ученые, записывается и хранится вся поступающая в мозг информация. Синапсы – основа нашей памяти, и возможности их практически безграничны. Считается, что мозг взрослого человека способен хранить 1019 бит информации, что превышает ее объем в глобальном информационном пространстве интернета.

Нейроны бывают разных видов и выполняют многочисленные функции:

  • принимают сигналы из внешнего мира и от внутренних органов;
  • передают возбуждение и нервные импульсы в пределах нервной системы;
  • осуществляют первичную обработку и фильтрацию сигналов;
  • сохраняют информацию и опыт;
  • занимаются производством белковых соединений и гормонов, необходимых для функционирования головного мозга и организма в целом.

Нейроны – это работяги, они постоянно находятся в действии, поэтому перегрузка нервной системы приводит к их частичной гибели. Но расхожее мнение, что нервные клетки не восстанавливаются, неверно. Есть такой отдел головного мозга – гиппокамп. Он способен ежедневно создавать почти 1400 новых нейронов. Другое дело, что они начинают работать, только когда активизируется деятельность мозга, устанавливаются новые связи, а среднестатистический человек не использует и 10 % своих нервных клеток. С возрастом количество активных нейронов сокращается. Однако дело тут не в их «отмирании», а в том, что снижается умственная активность, а значит и потребность в новых нервных клетках.

Итак, нервная система – это сложнейший механизм, предназначенный для управления нашим организмом и способный решать самые разнообразные задачи. Но как она будет функционировать, во многом зависит от самого человека, точнее от того, как мы эту нервную систему настроим. Все же пульт управление находится не где-нибудь, а в нашем мозгу. Наши мысли, желания, намерения, инстинкты и рефлексы управляют всеми процессами, происходящими в организме. Правда, далеко не всегда это нами осознается.

ФУНКЦИИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ





⇐ ПредыдущаяСтр 11 из 71Следующая ⇒

Центральная нервная система (ЦНС) в организме выполняет интегрирующую роль. Она объединяет в единое целое все ткани, органы, координируя их специфическую активность в составе це­лостных гомеостатических и поведенческих функциональных сис­тем (П. К. Анохин). Основными частными функциями ЦНС явля­ются следующие.

1. Управление деятельностью опорно-двигательного ап­парата. ЦНС регулирует тонус мышц и посредством его перерас­пределения поддерживает естественную позу, а при нарушении восстанавливает ее, инициирует все виды двигательной активнос­ти (физическая работа, физкультура, спорт, любое перемещение организма).

2. Регуляция работы внутренних органов осуществляет­ся вегетативной нервной системой и эндокринными железами; обеспечивает интенсивность их функционирования согласно потребностям организма в различных условиях его жизнедея­тельности.


 

3. Обеспечение сознания и всех видов психической дея­тельности. Психическая деятельность — это идеальная, субъек­тивно осознаваемая деятельность организма, осуществляемая с помощью нейрофизиологических процессов. И. П. Павлов ввел представление о высшей и низшей нервной деятельности. Высшая нервная деятельность это совокупность нейрофизиологиче­ских процессов, обеспечивающих сознание, подсознательную пе­реработку информации и целенаправленное поведение организма в окружающей среде. Психическая деятельность осуществляется с помощью высшей нервной деятельности и протекает осознанно, т.е. во время бодрствования, независимо от того, сопровождается она физической работой или нет. Высшая нервная деятельность про­текает во время бодрствования и сна (см. разделы 15.8, 15.9, 15.10). Низшая нервная деятельность — это совокупность нейрофизиоло­гических процессов, обеспечивающих осуществление безусловных рефлексов.

4. Формирование взаимодействия организма с окружаю­щей средой. Это реализуется, например, с помощью избегания или избавления от неприятных раздражителей (защитные реакции орга­низма), регуляции интенсивности обмена веществ при изменении температуры окружающей среды. Изменения внутренней среды организма, воспринимаемые субъективно в виде ощущений, также побуждают организм к той или иной целенаправленной двигатель­ной активности. Так, например, в случае недостатка воды и при по­вышении осмотического давления жидкостей организма возника­ет жажда, которая инициирует поведение, направленное на поиск и прием воды. Любая деятельность самой ЦНС реализуется в ко­нечном итоге с помощью функционирования отдельных клеток.



ФУНКЦИИ КЛЕТОК ЦНС И ЛИКВОРА,


КЛАССИФИКАЦИЯ НЕЙРОНОВ ЦНС,


ИХ МЕДИАТОРЫ И РЕЦЕПТОРЫ

Мозг человека содержит около 50 миллиардов нервных клеток, взаимодействие между которыми осуществляется посредством множества синапсов, число которых в тысячи раз больше количе­ства самих клеток (1015-1016), так как их аксоны делятся много­кратно дихотомически, поэтому один нейрон может образовы­вать до тысячи синапсов с другими нейронами. Нейроны оказывают свое влияние на органы и ткани также посредством синапсов.

А. Нервная клетка (нейрон) является структурной и функци­ональной единицей ЦНС, она состоит из сомы (тела клетки с яд-


ром) и отростков, представляющих собой большое число дендри-тов и один аксон (рис. 5.5). Потенциал покоя (ПП) нейрона состав­ляет 60-80 мВ, потенциал действия (ПД) -80-110 мВ. Сома и ден­дриты покрыты нервными окончаниями — синаптическими бутонами и отростками глиальных клеток. На одном нейроне чис­ло синаптических бутонов может достигать 10 тысяч (см. рис. 5.5). Аксон начинается от тела клетки аксонным холмиком. Диаметр тела клетки составляет 10-100 мкм, аксона — 1-6 мкм, на периферии длина аксона может достигать метра и более. Нейроны мозга обра­зуют колонки, ядра и слои, выполняющие определенные функции.


Клеточные скопления образуют серое вещество мозга. Между клет­ками проходят немиелинизированные и миелинизированные не­рвные волокна (дендриты и аксоны нейронов).

Функциями нервной клетки являются получение, переработ­ка и хранение информации, передача сигнала другим нервным клет­кам, регуляция деятельности эффекторных клеток различных ор­ганов и тканей организма. Целесообразно выделить следующие функциональные структуры нейрона.




1. Структуры, обеспечивающие синтез макромолекул, — это сома (тело нейрона), выполняющая трофическую функцию по от­ношению к отросткам (аксону и дендритам) и клеткам-эффекторам. Отросток, лишенный связи с телом нейрона, дегенерирует. Макро­молекулы транспортируются по аксону и дендритам.

2. Структуры, воспринимающие импульсы от других нервных клеток, — это тело и дендриты нейрона с расположенными на них шипиками, занимающими до 40% поверхности сомы нейрона и ден-дритов. Причем, если шипики не получают импульсацию, они исчезают. Импульсы могут поступать и к окончанию аксона — аксо-аксонные синапсы, например, в случае пресинаптического тормо­жения.

3. Структуры, где обычно возникает потенциал действия (гене­раторный пункт ПД), — аксонный холмик.

4. Структуры, проводящие возбуждение к другому нейрону или к эффектору, — аксон.

5. Структуры, передающие импульсы на другие клетки, — си­напсы.

Б. Классификация нейронов ЦНС. Нейроны делят на следу­ющие основные группы.

1. В зависимости от отдела ЦНС выделяют нейроны сомати­ческой и вегетативной нервной системы.

2. По источнику или направлению информации нейроны под­разделяют на: а) афферентные, воспринимающие с помощью ре­цепторов информацию о внешней и внутренней среде организма и передающие ее в вышележащие отделы ЦНС; б) эфферентные, передающие информацию к рабочим органам — эффекторам; не­рвные клетки, иннервирующие эффекторы, иногда называют эф-фекторными; эффекторные нейроны спинного мозга (мотонейроны) делят на а- иу-мотонейроны; в) вставочные (интернейроны), обес­печивающие взаимодействие между нейронами ЦНС.

3. По медиатору, выделяющемуся в окончаниях аксонов, раз­личают нейроны адренергические, холинергические, серотонинер-гические и т. д.

4. По влиянию — возбуждающие и тормозящие.


В. Глиальные клетки (нейроглия — «нервный клей») более многочисленны, чем нейроны, составляют около 50% объема ЦНС. Они способны к делению в течение всей жизни. Размеры глиальных клеток в 3—4 раза меньше нервных, с возрастом их число увеличивается (число нейронов уменьшается). Тела нейронов, как и их аксоны, окружены глиальными клетками. Глиальные клетки выполняют несколько функций: опорную, защитную, изолирующую, обменную (снабжение нейронов питательными веществами). Микроглиальные клетки способны к фагоцитозу, ритмическому изменению своего объема (период «сокращения» -1,5 мин, «расслабления» — 4 мин). Циклы изменения объема повторяются через каждые 2-20 час. Полагают, что пульсация способствует продвижению аксоплазмы в нейронах и влияет на ток межклеточной жидкости. Мембранный потенциал клеток нейроглии составляет 70-90 мВ, однако ПД они не генерируют, возникают только лишь локальные токи, электротонически распространяющиеся от одной клетки к другой. Процессы возбуж­дения в нейронах и электрические явления в глиальных клетках, по-видимому, взаимодействуют.»

Г. Ликвор бесцветная прозрачная жидкость, заполняющая мозговые желудочки, Спинномозговой канал и субарахноидальное пространство. Ее происхождение связано с интерстициальной жид­костью мозга, значительная часть ликвора образуется сосудисты­ми сплетениями желудочков мозга. Непосредственной питатель­ной средой клеток мозга является интерстициальная жидкость, в которую клетки выделяют также и продукты своего обмена. Лик-вор представляет собой совокупность фильтрата плазмы крови и интерстициальной жидкости: она содержит около 90% воды и око­ло 10% сухого остатка (2% — органические, 8% — неорганические вещества).

Д. Медиаторы и рецепторы синапсов ЦНС. Медиаторами синапсов ЦНС являются многие химические вещества, разнород­ные в структурном отношении (в головном мозге к настоящему времени обнаружено около 30 биологически активных веществ). Вещество, из которого синтезируется медиатор (предшественник медиатора), попадает в нейрон или его окончание из крови или ликвора, в результате биохимических реакций под действием ферментов в нервных окончаниях превращается в соответствую­щий медиатор и накапливается в синаптических везикулах. По химическому строению медиаторы можно разделить на несколько групп, главными из которых являются амины, аминокислоты, полипептиды. Достаточно широко распространенным медиатором является ацетилхолин.

Согласно принципу Дейла,один нейрон синтезирует и ис­пользует один и тот же медиатор или одни и те же медиаторы во всех разветвлениях своего аксона («один нейрон — один меди­атор»). Кроме основного медиатора, как выяснилось, в окончаниях аксона могут выделяться и другие — сопутствующие медиаторы (ко-медиаторы), играющие модулирующую роль и более медленно дей­ствующие. Однако в спинном мозге установлено два быстродейству­ющих медиатора в одном тормозном нейроне — ГАМК и глицин и даже один тормозной (ГАМК) и один возбуждающий (АТФ). По­этому принцип Дейла в новой редакции сначала звучал: «Один ней­рон — один быстрый медиатор», а затем: «Один нейрон — один быс­трый синаптический эффект» (предполагаются и другие варианты).

Эффект действия медиатора зависит в основном от свойств постсинаптической мембраны и вторых посредников. Это явление особенно ярко демонстрируется при сравнении эффектов отдельных медиаторов в ЦНС и в периферических синапсах организма. Ацетил­холин, например, в коре мозга при микроаппликациях на разные нейроны может вызывать возбуждение и торможение, в синапсах сер­дца — торможение, в синапсах гладкой мускулатуры желудочно-ки­шечного тракта — возбуждение. Катехоламины стимулируют сердеч­ную деятельность, но тормозят сокращения желудка и кишечника.

5.7. МЕХАНИЗМ ВОЗБУЖДЕНИЯ НЕЙРОНОВ ЦНС

В любых химических синапсах (ЦНС, вегетативных ганглиях, в нервно-мышечном) механизмы передачи сигнала в общих чертах подобны (см. раздел 2.1). Однако в возбуждении нейронов ЦНС имеются характерные особенности, основными из которых явля­ются следующие.

1. Для возбуждения нейрона (возникновения ПД) необ­ходимы поток афферентных импульсов и их взаимодействие. Это объясняется тем, что один пришедший к нейрону импульс вы­зывает небольшой возбуждающий постсинаптический потенциал (ВПСП, рис. 5.6) — всего 0,05 мВ (миниатюрный ВПСП). Один пу­зырек содержит до нескольких десятков тысяч молекул медиатора, например ацетилхолина. Если учесть, что пороговый потенциал нейрона 5-10 мВ, ясно, что для возбуждения нейрона требуется множество импульсов.

2. Место возникновения генераторных ВПСП, вызываю­щих ПД нейрона. Подавляющее большинство нейрональных си­напсов находится на дендритах нейрона. Однако наиболее эффек­тивно вызывают возбуждение нейрона синаптические контакты,

 

расположенные на теле нейрона. Это связано с тем, что постси-наптические мембраны этих синапсов располагаются в непосред­ственной близости от места первичного возникновения ПД, рас­полагающегося в аксонном холмике. Близость соматических синапсов к аксонному холмику обеспечивает участие их ВПСП в механизмах генерации ПД. В этой связи некоторые авторы предла­гают называть их генераторными синапсами.

3. Генераторный пункт нейрона, т.е. место возникнове­ния ПД, аксонный холмик. Синапсьг на нем отсутствуют, отли­чительной особенностью мембраны аксонного холмика является вы-» сокая возбудимость, в 3-4 раза превосходящая возбудимость сома-дендритной мембраны нейрона, что объясняется более высо­кой концентрацией Ыа-каналов на аксонном холмике. ВПСП элек-тротонически достигают аксонный холмик, обеспечивая здесь уменьшение мембранного потенциала до критического уровня. В этот момент возникает ПД. Возникший в аксонном холмике ПД, с одной стороны, ортодромно переходит на аксон, с другой — анти­дромно на тело нейрона.

4. Роль дендритов в возникновении возбуждения до сих пор дискутируется. Полагают, что множество ВПСП, возникающих на дендритах, электротонически управляют возбудимостью нейрона. В этой связи дендритные синапсы получили название модулятор­ных синапсов.

5.8. ХАРАКТЕРИСТИКА РАСПРОСТРАНЕНИЯ ВОЗБУЖДЕНИЯ В ЦНС

Особенности распространения возбуждения в ЦНС объясняют­ся ее нейронным строением — наличием химических синапсов, мно­гократным ветвлением аксонов нейронов, наличием замкнутых ней­ронных путей. Этими особенностями являются следующие.


1. Одностороннее распространение возбуждения в нейрон­ных цепях, в рефлекторных дугах. Одностороннее распростране­ние возбуждения от аксона одного нейрона к телу или дендритам другого нейрона, но не обратно, объясняется свойствами химиче­ских синапсов, которые проводят возбуждение только в одном на­правлении.

2. Замедленное распространение возбуждения в ЦНС по сравнению с нервным волокном объясняется наличием на путях распространения возбуждения множества химических синапсов. Суммарная задержка передачи возбуждения в нейроне до возник­новения ПД достигает величины порядка 2 мс.

3. Иррадиация (дивергенция) возбуждения в ЦНСобъяс­няется ветвлением аксонов нейронов, их способностью устанавли­вать многочисленные связи с другими нейронами, наличием вста­вочных нейронов, аксоны которых также ветвятся (рис. 5.7 — А).

 

4. Конвергенция возбуждения (принцип общего конечного пути) — схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип шеррингтоновской воронки). Объясняется наличием мно­гих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных ней­ронов. На одном нейроне ЦНС могут располагаться до 10 000 си­напсов, на мотонейронах — до 20 000 (рис. 5.7 — Б).

5. Циркуляция возбуждения по замкнутым нейронным цепям, которая может продолжаться минутами и даже часами (рис. 5.8).


6. Распространение возбуждения в центральной нервной системе легко блокируется фармакологическими препаратами, что находит широкое применение в клинической практике. В физиоло­гических условиях ограничения распространения возбуждения по ЦНС связаны с включением нейрофизиологических механизмов торможения нейронов.

Рассмотренные особенности распространения возбуждения дают возможность подойти к пониманию отличительных свойств нервных центров.

СВОЙСТВА НЕРВНЫХ ЦЕНТРОВ

Рассматриваемые ниже свойства нервных центров связаны с некоторыми особенностями распространения возбуждения в ЦНС, особыми свойствами химических синапсов и свойствами мембран нервных клеток. Основными свойствами нервных центров являют­ся следующие.

А. Инерционность сравнительно медленное возникновение возбуждения всего комплекса нейронов центра при поступлении к нему импульсов и медленное исчезновение возбуждения нейронов центра после прекращения входной импульсации. Инерционность центров связана с суммацией возбуждения и последействием.

Явление суммации возбуждения в ЦНС открыл И. М. Сеченов (1868) в опыте на лягушке: раздражение конечности лягушки сла­быми редкими импульсами не вызывает реакции, а более частые раздражения такими же слабыми импульсами сопровождаются от­ветной реакцией — лягушка совершает прыжок. Различают времен­ную (последовательную) и пространственную суммацию (рис. 5.9).

Последействие — это продолжение возбуждения нервного цен­тра после прекращения поступления к нему импульсов по аффе­рентным нервным путям. Основной причиной последействия явля­ется циркуляция возбуждения по замкнутым нейронным цепям (см. рис. 5.8), которая может продолжаться минуты и даже часы.

Б. Фоновая активность нервных центров (тонус) объяс­няется: 1) спонтанной активностью нейронов ЦНС; 2) гумораль­ными влияниями биологически активных веществ (метаболиты, гормоны, медиаторы и др.), циркулирующих в крови и влияющих на возбудимость нейронов; 3) афферентной импульсацией от раз­личных рефлексогенных зон; 4) суммацией миниатюрных по­тенциалов, возникающих в результате спонтанного выделения квантов медиатора из аксонов, образующих синапсы на нейронах; 5) циркуляцией возбуждения в ЦНС. Значениефоновой актив­ности нервных центров заключается в обеспечении некоторого

 

исходного уровня деятельного состояния центра и эффекторов. Этот уровень может увеличиваться или уменьшаться в зависимос­ти от колебаний суммарной активности нейронов нервного цент­ра-регулятора.

В. Трансформация ритма возбуждения — это изменение числа импульсов, возникающих в нейронах центра на выходе относительно числа импульсов, поступающих на вход данного центра. Трансформация ритма возбуждения возможна как в сторону увеличения, так и в сторону уменьшения. Увеличению числа импульсов, возникающих в центре в ответ на афферентную импульсацию, способствуют иррадиация процесса возбуждения и последействие. Уменьшение числа импульсов в нервном центре объясняется снижением его возбудимости за счет процессов пре-и постсинаптического торможения, а также избыточным потоком афферентных импульсов. При большом потоке афферентных влияний, когда уже все нейроны центра или нейронного пула возбуждены, дальнейшее увеличение афферентных входов не увеличивает число возбужденных нейронов.

Г. Большая чувствительность ЦНС к изменениям внут­ренней среды, например, к изменению содержания глюкозы в кро­ви, газового состава крови, температуры, к вводимым с лечебной целью различным фармакологическим препаратам. В первую оче­редь реагируют синапсы нейронов. Особенно чувствительны ней­роны ЦНС к недостатку глюкозы и кислорода. При снижении со­держания глюкозы в 2 раза ниже нормы (до 50% от нормы) могут возникнуть судороги. Тяжелые последствия для ЦНС вызывает недостаток кислорода в крови. Прекращение кровотока всего лишь на 10 с приводит к очевидным нарушениям функций мозга, человек теряет сознание. Прекращение кровотока на 8-12 мин вызывает необратимые нарушения деятельности мозга — погибают многие нейроны, в первую очередь корковые, что ведет к тяжелым послед­ствиям.

Д. Пластичность нервных центров способность нервных элементов к перестройке функциональных свойств. Основные про­явления пластичности следующие.

1. Синаптическое облегчение — это улучшение проведения в синапсах после короткого раздражения афферентных путей. Сте­пень выраженности облегчения возрастает с увеличением частоты импульсов, оно максимально, когда импульсы поступают с интер­валом в несколько миллисекунд.

Длительность синаптического облегчения зависит от свойств синапса и характера раздражения — после одиночных стимулов оно невелико, после раздражающей серии облегчение в ЦНС может

продолжаться от нескольких минут до нескольких часов. По-види­мому, главной причиной возникновения синаптического облегче­ния является накопление Са2+ в пресинаптических окончаниях, поскольку Са2+, который входит в нервное окончание во время ПД, накапливается там, так как ионная помпа не успевает выводить его из нервного окончания. Соответственно увеличивается высвобож­дение медиатора при возникновении каждого импульса в нервном окончании, возрастает ВПСП. Кроме того, при частом использо­вании синапсов ускоряется синтез рецепторов и медиатора и ус­коряется мобилизация пузырьков медиатора, напротив, при редком использовании синапсов синтез медиаторов уменьшается — важ­нейшее свойство ЦНС. Поэтому фоновая активность нейронов спо­собствует возникновению возбуждения в нервных центрах. Зна­чение синаптического облегчения заключается в том, что оно создает предпосылки улучшения процессов переработки информа­ции на нейронах нервных центров, что крайне важно, например, для обучения в ходе выработки двигательных навыков, условных рефлексов.

2. Синаптическая депрессия — это ухудшение проведения в синапсах в результате длительной посылки импульсов, например, при длительном раздражении афферентного нерва (утомляемость центра). Утомляемость нервных центров продемонстрировал Н. Е. Введенский в опыте на препарате лягушки при многократном рефлекторном вызове сокращения икроножной мышцы с помощью раздражения п. тлЫаНз и п. регопеиз. В этом случае ритмическое раздражение одного нерва вызывает ритмические сокращения мыш­цы, приводящие к ослаблению силы ее сокращения вплоть до пол­ного отсутствия сокращения. Переключение раздражения на дру­гой нерв сразу же вызывает сокращение той же мышцы, что свидетельствует о локализации утомления не в мышце, а в цент­ральной части рефлекторной дуги (рис. 5.10). Ослабление реакции центра на афферентные импульсы выражается в снижении постси-наптических потенциалов. Оно объясняется расходованием меди­атора, накоплением метаболитов, в частности, закислением среды при длительном проведении возбуждения по одним и тем же ней­ронным цепям.

3. Доминанта — стойкий господствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров. Доми­нанта — это более стойкий феномен облегчения. Явление доминан­ты открыл А. А. Ухтомский (1923) в опытах с раздражением двига­тельных зон большого мозга и наблюдением сгибания конечности животного. Как выяснилось, если раздражать корковую двигатель­ную зону на фоне избыточного повышения возбудимости другого

 

4—247

нервного центра, сгибания конечности может не произойти. Вместо^ сгибания конечности раздражение двигательной зоны вызывает ре­акцию тех эффекторов, деятельность которых контролируется гос­подствующим, т. е. доминирующим в данный момент в ЦНС, нерв­ным центром.

Доминантный очаг возбуждения обладает рядом особых свойств, главными из которых являются следующие: инерционность, стойкость, повышенная возбудимость, способность «притягивать» к себе ирра-диирующие по ЦНС возбуждения, способность оказывать.угнета­ющие влияния на центры-конкуренты и другие нервные центры.

Значение доминантного очага возбуждения в ЦНС заключает­ся в том, что на его базе формируется конкретная приспособитель­ная деятельность, ориентированная на достижение полезных ре­зультатов, необходимых для устранения причин, поддерживающих тот или иной нервный центр в доминантном состоянии. Напри­мер, на базе доминантного состояния центра голода реализуется пищедобывательное поведение, на базе доминантного состояния центра жажды запускается поведение, направленное на поиск воды. Успешное завершение данных поведенческих актов в ко­нечном итоге устраняет физиологические причины доминантно­го состояния центров голода или жажды. Доминантное состоя­ние центров ЦНС обеспечивает автоматизированное выполнение двигательных реакций.


4. Компенсация нарушенных функций после повреждения того или иного центра — также результат проявления пластичности ЦНС. Хорошо известны клинические наблюдения за больными, у которых после кровоизлияний в вещество мозга повреждались цен­тры регуляции мышечного тонуса и акта ходьбы. Тем не менее, со временем отмечалось, что парализованная конечность у больных постепенно начинает вовлекаться в двигательную активность, при этом нормализуется тонус ее мышц. Нарушенная двигательная функция частично, а иногда и полностью восстанавливается за счет большей активности сохранившихся нейронов и вовлечения в эту функцию других — «рассеянных» нейронов в коре большого мозга^с подобными функциями. Этому способствуют регулярные (настой­чивые, упорные) пассивные и активные движения.

ТОРМОЖЕНИЕ В ЦНС

Торможение это активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Тор­можение вторично относительно процесса возбуждения, так как всегда возникает как следствие возбуждения.

Торможение в ЦНС открыл И. М. Сеченов (1863). В опыте на таламической лягушке он определял латентное время сгибатель-ного рефлекса при погружении задней конечности в слабый раствор серной кислоты. Было показано, что латентное время рефлекса зна­чительно увеличивается, если на зрительный бугор предваритель­но положить кристаллик поваренной соли. Открытие И. М. Се­ченова послужило толчком для дальнейших исследований торможения в ЦНС, при этом было открыто два механизма тормо­жения: пост- и пресинаптическое.

А. Постсинаптическое торможение возникает на постси-наптических мембранах нейрона в результате гиперполяризаци­онного постсинаптическрго потенциала, уменьшающего возбуди­мость нейрона, угнетающего его способность реагировать на возбуждающие влияния. По этой причине вызванный гиперполя­ризационный потенциал был назван тормозным постсинаптиче-ским потенциалом, ТПСП‘(см. рис. 5.6). АмплитудаТПСП 1-5 мВ, он способен суммироваться.

Возбудимость клетки от ТПСП (гиперполяризационного постси-наптического потенциала) уменьшается потому, что увеличивается пороговый потенциал (МО, так как Екр (критический уровень депо­ляризации, КУД) остается на прежнем уровне, а мембранный потен­циал (Е ) возрастает. ТПСП возникает под влиянием и аминокисло-


ты глицина, и ГАМК — гамма-аминомасляной кислоты. В спинном мозге глицин выделяется особыми тормозными клетками (клет­ками Реншоу) в синапсах, образуемых этими клетками на мембране нейрона-мишени. Действуя на ионотропный рецептор постсинапти-ческой мембраны, глицин увеличивает ее проницаемость для СГ, при этом СГ поступает в клетку согласно концентрационному градиенту вопреки электрическому градиенту, в результате чего развивается гиперполяризация. В безхлорной среде тормозная роль глицина не реализуется. Ареактивность нейрона к возбуждающим импуль­сам является следствием алгебраической суммации ТПСП и ВПСП, в связи с чем в зоне аксонного холмика не происходит депо­ляризации мембраны до критического уровня. При действии ГАМК на постсинаптическую мембрану ТПСП развивается в результате входа СГ в клетку или выхода К+ из клетки. Концентрационные гра­диенты ионов К+ в процессе развития торможения нейронов поддер­живаются Ыа/К-помпой, ионов СГ — СГ-помпой. Разновидности постсинаптического торможения представлены на рис. 5.11.

Б. Пресинаптическое торможение развивается в преси-наптических окончаниях. При этом мембранный потенциал и возбудимость исследуемых нейронов не изменяются либо реги­стрируется низкоамплитудный ВПСП, недостаточный для возникновения ПД (рис. 5.12). Возбуждение блокируется в преси» наптических окончаниях вследствие деполяризации их. В очаге де­поляризации нарушается процесс распространения возбужде­ния, следовательно, поступающие импульсы, не имея возможности пройти зону деполяризации в обычном количестве и обычной амп­литуды, не обеспечивают выделение медиатора в синаптическую щель в достаточном количестве, поэтому нейрон не возбуждается, его функциональное состояние, естественно, остается неизменным. Деполяризацию пресинаптической терминали вызывают специаль­ные тормозные вставочные клетки, аксоны которых образу-

ют синапсы на пресинаптических окончаниях аксона-мишени (см. рис 5.12). Торможение (деполяризация) после одного аффе­рентного залпа продолжается 300-400 мс, медиатором является гамма-аминомасляная кислота (ГАМК), которая действует на ГАМК-рецепторы.

Деполяризация является следствием повышения проницаемо­сти для СГ, в результате чего он выходит из клетки согласно элек­трическому градиенту. Это доказывает, что в составе мембран пресинаптических терминалей имеется хлорный насос, обеспечи­вающий транспорт СГ внутрь клетки вопреки электрическому гра­диенту.

Разновидности пресинаптического торможения изучены недостаточно. По-видимому, имеются те же варианты, что и для постсинаптического торможения. В частности, на рис. 5.12 пред­ставлено параллельное и латеральное пресинаптическое торможе­ние. Однако возвратное пресинаптическое торможение на уровне спинного мозга (по типу возвратного постсинаптического тормо­жения) у млекопитающих обнаружить не удалось, хотя у лягушек

оно выявлено.

В реальной действительности взаимоотношения возбуждающих и тормозных нейронов значительно сложнее, чем представлено на рис. 5.11 и 5.12, тем не менее все варианты пре- и постсинаптиче­ского торможений можно объединить в две группы: 1) когда бло­кируется собственный путь самим распространяющимся возбуж­дением с помощью вставочных тормозных клеток (параллельное и возвратное торможение) и 2) когда блокируются другие нервные элементы под влиянием импульсов от соседних возбуждающих ней­ронов с включением тормозных клеток (латеральное и прямое тор­можения). Поскольку тормозные клетки сами могут быть затормо­жены другими тормозными нейронами (торможение торможения), это может облегчить распространение возбуждения.


В. Роль торможения.

1.Оба известных вида торможения со всеми их разновидно­стями выполняют охранительную роль. Отсутствие торможе­ния привело бы к истощению медиаторов в аксонах нейронов и пре­кращению деятельности ЦНС.

2. Торможение играет важную роль в обработке поступаю­щей в ЦНС информации. Особенно ярко выражена эта роль у пре-синаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть заблоки­рованы отдельные нервные волокна. К одному возбуждающему ней­рону могут подходить сотни и тысячи импульсов по разным терми-налям. Вместе с тем, число дошедших до нейрона импульсов определяется пресинаптическим торможением. Торможение лате­ральных путей обеспечивает выделение существенных сигналов, из фона. Блокада торможения ведет к широкой иррадиации возбуж­дения и судорогам (например, при выключении пресинаптического торможения бикукулином).

3. Торможение является важным фактором обеспечения координационной деятельности ЦНС.











КАК УСТРОЕНА НЕРВНАЯ СИСТЕМА ЧЕЛОВЕКА: ОТ АКСОНА ДО ДЕЙСТВИЯ


Организм – сложная структура, где все органы и системы работают слаженно и находятся в тесном взаимодействии. Как раз эту слаженность обеспечивает нервная система, это некая сеть, опутывающая тело, и ее основная задача — проконтролировать адекватную реакцию на раздражители. При любом, даже малейшем изменении в организме или окружающей среде нервная система посылает сотни импульсов, запускающие механизмы, позволяющие организму подстроиться или отреагировать на раздражитель, например, отдернуть руку от горячего предмета или же одеться при появлении мурашек, чтобы согреться.


Основные функции


Нервная система контролирует важные процессы жизнедеятельности, а при их нарушении или отсутствии — жизнь под угрозой. Если говорить об основных функциях этой системы, то они следующие:



  • регуляция работы внутренних органов: импульсы контролируют пищеварение, дыхание, кровообращение и др.


  • координация работы на разных уровнях органов и систем;


  • гармонизация взаимоотношения человека и окружающей среды.


Свойственные человеку высшие психофизиологические процессы: сознание, эмоции, мышление и т.д. обеспечиваются как раз благодаря столь развитой нервной системе.


Как устроена нервная система?


Нейрон — структурная единица нервной системы, имеющий тело и отросток, причем последний выполняют несколько функций:




Его основное предназначение — отправить импульс, а конечным адресатом может быть другая клетка, ткань или даже орган, которые должны отреагировать определенным образом.




Он действует противоположно, то есть принимает импульс и перемещает его в тело нейрона.


В организме несколько видов нейронов:


  • Чувствительные


Сосредоточенные в ганглиях (нервных узлах) и получающие импульс от рецепторов.




Являются промежуточным звеном, получают импульс от чувствительных нейронов и передают их далее по схеме.




Запускают процесс движения в ответ на раздражитель (импульс). Эти нейроны передают импульс от мозга к мышцам, если нужно двигаться, железам, если нужно выделить, например, слюну при приеме пищи или же ее запахе или виде.


Передача импульсов в норме происходит за доли секунд. Если же скорость передвижения замедлена — это симптом каких-либо патологических процессов, поэтому нужно соответствующее обследование и лечение.




Нервная система и ее отделы


Работа нервной системы очень сложная, но чтобы ее было легче понять, можно рассмотреть ее классификацию по анатомическим и морфологическим признакам, это и отражает основную работу и предназначение ее отделов.


Центральная


Это головной и спинной мозг — главные центры, в которых проходит анализ поступающей информации и формирование соответствующего ответа. В головном мозге формируются мысли, кстати, за день из более 50 тысяч, эмоции, чувства, именно головным мозгом мы видим, здесь хранятся воспоминания и чувства.


Периферическая


Это нервные узлы (ганглии), окончания и сами нервы, которые могут быть двигательными или чувствительными. Это опосредованные участники, инструмент, передающий информацию от участка тела к головному или спинному мозгу.


Выделяют 12 пар черепных нервов, исходящих из головного мозга и обеспечивающие восприятие импульсов. Некоторые черепные нервы участвуют в акте дыхания, пищеварения, а также сердечной деятельности, но большая часть регулирует работы органов головы и шеи.


Тридцать одна пара спинномозговых нервов распространяет свое действие на определенный участок туловища и являются смешенными, то есть не только чувствительными, но и двигательными. Их область «компетенции» отражена в названии: шейный, копчиковый и др.


Соматическая


Ее главная задача – регулировать функции скелетных мышц. Но эти действия сознательны, то есть их можно контролировать и все движения осознаны, ведь регулируются корой головного мозга. Большая часть этих волокон сосредоточена в коже и мышечном каркасе.


Например, читая эту статью, вы решили подпереть подбородок рукой – эти действия осуществляются именно соматической нервной системой при помощи 2-х типов нейронов: сенсорных, регулирующих доставку импульса к ЦНС, и моторных, обеспечивающих обратный ответ.


Вегетативная




Регулирует работу внутренних органов. В отличие от соматики, эта часть системы сосредоточена в стволе мозга и бессознательна, то есть вся работа происходит «автоматически». Мы не даем осознанный сигнал оптимизировать или активировать секрецию гормонов, кровоснабжение, дыхание и др.


Регуляция осуществляется в 2-х направлениях: активация и подавление, и это обеспечивается 2-я отделами вегетативной нервной системы: парасимпатическим и симпатическим.


Симпатический отдел


Регулирует деятельность внутренних органов в условиях повышенных энергозатрат, например, при стрессах, физической нагрузке, сильных эмоциональных потрясениях. Это «скорая помощь», которая поддерживает работу организма, чтобы преодолеть неблагоприятные условия. Например, во время бега, симпатика учащает дыхание, пульс, чтобы органы и системы получали кислород, питательные вещества и энергию для возможности продолжать двигаться и существовать.


Но резервы организма и возможности симпатики не безграничны, и когда компенсаторные функции исчерпают себя, в работу включается парасимпатический отдел, он как второе дыхание.


Парасимпатическая вегетативная нервная система


Локализуется в среднем мозге и крестцовом отделе позвоночника. Основное предназначение этого отдела – обеспечение полноценного отдыха для сохранения и/или накопления энергии путем снижения физической активности. Проще говоря, этот отдел замедляет пульс, например, во время сна и отдыха, экономя энергию и обеспечивая восстановление сил. Именно саморегуляция этой системы позволяет включать защитные механизмы, особенно если человек находится на критическом уровне переутомления и истощения.


Эти два отдела кажутся антагонистами: один возбуждает, другой – обеспечивает отдых, но это не совсем так. Они всегда работают слаженно, сообща, но разными методами: симпатика – активация работы, парасимпатика – нацелена на отдых и возможность восстановить силы.


Благодаря этому, организм может адекватно реагировать на сложившуюся ситуацию, подстраиваясь под любые условия. Эти отделы и образуют основу гомеостаза – сбалансированного регулирования уровня активности организма.


Нервная система – центр, где происходит регулирование работы органов и систем. Ее стараниями мы дышим, но не осознаем и не контролируем этот процесс, ходим, двигаемся и этот процесс, кстати, мы контролируем. В ответ на эмоции учащается пульс, появляются мурашки на коже. Этим и можно объяснить, почему все болезни от нервов, ведь если нет должного контроля, вся система начинает разваливаться.


Текст: Юлия Лапушкина.

нервной системы человека | Описание, развитие, анатомия и функции

Пренатальное и постнатальное развитие нервной системы человека

Практически все нервные клетки или нейроны генерируются во время пренатальной жизни, и в большинстве случаев после этого они не заменяются новыми нейронами. Морфологически нервная система впервые появляется примерно через 18 дней после зачатия с образованием нервной пластинки. Функционально он появляется с первым признаком рефлекторной активности во втором пренатальном месяце, когда стимуляция прикосновением к верхней губе вызывает реакцию отдергивания головы.Многие рефлексы головы, туловища и конечностей могут появиться на третьем месяце.

В процессе своего развития нервная система претерпевает значительные изменения, чтобы достичь своей сложной организации. Чтобы произвести примерно 1 триллион нейронов, присутствующих в зрелом мозге, в среднем в течение всей пренатальной жизни необходимо генерировать 2,5 миллиона нейронов в минуту. Это включает формирование нейронных цепей, содержащих 100 триллионов синапсов, поскольку каждый потенциальный нейрон в конечном итоге связан либо с выбранным набором других нейронов, либо с конкретными целями, такими как сенсорные окончания.Более того, синаптические связи с другими нейронами устанавливаются в определенных местах на клеточных мембранах целевых нейронов. Совокупность этих событий не считается исключительным продуктом генетического кода, поскольку генов просто не хватает, чтобы объяснить такую ​​сложность. Скорее, дифференцировка и последующее развитие эмбриональных клеток в зрелые нейроны и глиальные клетки достигается двумя наборами влияний: (1) специфическими подмножествами генов и (2) стимулами окружающей среды внутри и вне эмбриона.Генетические влияния имеют решающее значение для развития нервной системы в упорядоченной и временной последовательности. Клеточная дифференцировка, например, зависит от серии сигналов, регулирующих транскрипцию, процесса, в котором молекулы дезоксирибонуклеиновой кислоты (ДНК) дают начало молекулам рибонуклеиновой кислоты (РНК), которые, в свою очередь, выражают генетические сообщения, контролирующие клеточную активность. Влияния окружающей среды, происходящие от самого эмбриона, включают клеточные сигналы, которые состоят из диффундирующих молекулярных факторов ( см. Ниже Развитие нейронов).К факторам внешней среды относятся питание, сенсорный опыт, социальное взаимодействие и даже обучение. Все это важно для правильной дифференциации отдельных нейронов и тонкой настройки синаптических связей. Таким образом, нервная система требует непрерывной стимуляции в течение всей жизни для поддержания функциональной активности.

Развитие нейронов

На второй неделе пренатальной жизни быстро растущая бластоциста (связка клеток, на которую делится оплодотворенная яйцеклетка) превращается в так называемый эмбриональный диск.Эмбриональный диск вскоре приобретает три слоя: эктодерму (внешний слой), мезодерму (средний слой) и энтодерму (внутренний слой). Внутри мезодермы растет хорда, осевой стержень, который служит временным позвоночником. И мезодерма, и хорда выделяют химическое вещество, которое инструктирует и побуждает соседние недифференцированные клетки эктодермы утолщаться вдоль того, что станет дорсальной средней линией тела, образуя нервную пластинку. Нервная пластинка состоит из нервных клеток-предшественников, известных как нейроэпителиальные клетки, которые развиваются в нервную трубку ( см. Ниже Морфологическое развитие).Затем нейроэпителиальные клетки начинают делиться, диверсифицироваться и давать начало незрелым нейронам и нейроглии, которые, в свою очередь, мигрируют из нервной трубки в свое окончательное местоположение. Каждый нейрон образует дендриты и аксон; аксоны удлиняются и образуют ветви, концы которых образуют синаптические связи с выбранным набором целевых нейронов или мышечных волокон.

Человеческое эмбриональное развитие Развитие человеческого эмбриона на 18-й день, на стадии диска или щита, показано на трех четвертях (слева) и в поперечном сечении (справа). Encyclopdia Britannica, Inc.
Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.
Подпишитесь сегодня

Замечательные события этого раннего развития включают упорядоченную миграцию миллиардов нейронов, рост их аксонов (многие из которых широко распространяются по всему мозгу) и формирование тысяч синапсов между отдельными аксонами и их целевыми нейронами. Миграция и рост нейронов зависят, по крайней мере частично, от химических и физических воздействий.Растущие концы аксонов (называемые конусами роста), по-видимому, распознают и реагируют на различные молекулярные сигналы, которые направляют аксоны и нервные ветви к их соответствующим целям и устраняют те, которые пытаются синапсировать с неподходящими целями. Как только синаптическая связь установлена, клетка-мишень высвобождает трофический фактор (например, фактор роста нервов), который необходим для выживания нейрона, синапсирующегося с ней. Сигналы физического наведения участвуют в наведении контактов или миграции незрелых нейронов по каркасу из глиальных волокон.

В некоторых регионах развивающейся нервной системы синаптические контакты изначально не точны или стабильны, а затем следует упорядоченная реорганизация, включая устранение многих клеток и синапсов. Нестабильность некоторых синаптических связей сохраняется до тех пор, пока не наступит так называемый критический период, до которого влияние окружающей среды играет важную роль в правильной дифференцировке нейронов и в тонкой настройке многих синаптических связей. После критического периода синаптические связи становятся стабильными и вряд ли будут изменены под влиянием окружающей среды.Это говорит о том, что на определенные навыки и сенсорную деятельность можно повлиять во время развития (включая послеродовую жизнь), а для некоторых интеллектуальных навыков эта способность к адаптации предположительно сохраняется в зрелом и позднем возрасте.

.

нервной системы человека | Описание, развитие, анатомия и функции

Пренатальное и постнатальное развитие нервной системы человека

Практически все нервные клетки или нейроны генерируются во время пренатальной жизни, и в большинстве случаев после этого они не заменяются новыми нейронами. Морфологически нервная система впервые появляется примерно через 18 дней после зачатия с образованием нервной пластинки. Функционально он появляется с первым признаком рефлекторной активности во втором пренатальном месяце, когда стимуляция прикосновением к верхней губе вызывает реакцию отдергивания головы.Многие рефлексы головы, туловища и конечностей могут появиться на третьем месяце.

В процессе своего развития нервная система претерпевает значительные изменения, чтобы достичь своей сложной организации. Чтобы произвести примерно 1 триллион нейронов, присутствующих в зрелом мозге, в среднем в течение всей пренатальной жизни необходимо генерировать 2,5 миллиона нейронов в минуту. Это включает формирование нейронных цепей, содержащих 100 триллионов синапсов, поскольку каждый потенциальный нейрон в конечном итоге связан либо с выбранным набором других нейронов, либо с конкретными целями, такими как сенсорные окончания.Более того, синаптические связи с другими нейронами устанавливаются в определенных местах на клеточных мембранах целевых нейронов. Совокупность этих событий не считается исключительным продуктом генетического кода, поскольку генов просто не хватает, чтобы объяснить такую ​​сложность. Скорее, дифференцировка и последующее развитие эмбриональных клеток в зрелые нейроны и глиальные клетки достигается двумя наборами влияний: (1) специфическими подмножествами генов и (2) стимулами окружающей среды внутри и вне эмбриона.Генетические влияния имеют решающее значение для развития нервной системы в упорядоченной и временной последовательности. Клеточная дифференцировка, например, зависит от серии сигналов, регулирующих транскрипцию, процесса, в котором молекулы дезоксирибонуклеиновой кислоты (ДНК) дают начало молекулам рибонуклеиновой кислоты (РНК), которые, в свою очередь, выражают генетические сообщения, контролирующие клеточную активность. Влияния окружающей среды, происходящие от самого эмбриона, включают клеточные сигналы, которые состоят из диффундирующих молекулярных факторов ( см. Ниже Развитие нейронов).К факторам внешней среды относятся питание, сенсорный опыт, социальное взаимодействие и даже обучение. Все это важно для правильной дифференциации отдельных нейронов и тонкой настройки синаптических связей. Таким образом, нервная система требует непрерывной стимуляции в течение всей жизни для поддержания функциональной активности.

Развитие нейронов

На второй неделе пренатальной жизни быстро растущая бластоциста (связка клеток, на которую делится оплодотворенная яйцеклетка) превращается в так называемый эмбриональный диск.Эмбриональный диск вскоре приобретает три слоя: эктодерму (внешний слой), мезодерму (средний слой) и энтодерму (внутренний слой). Внутри мезодермы растет хорда, осевой стержень, который служит временным позвоночником. И мезодерма, и хорда выделяют химическое вещество, которое инструктирует и побуждает соседние недифференцированные клетки эктодермы утолщаться вдоль того, что станет дорсальной средней линией тела, образуя нервную пластинку. Нервная пластинка состоит из нервных клеток-предшественников, известных как нейроэпителиальные клетки, которые развиваются в нервную трубку ( см. Ниже Морфологическое развитие).Затем нейроэпителиальные клетки начинают делиться, диверсифицироваться и давать начало незрелым нейронам и нейроглии, которые, в свою очередь, мигрируют из нервной трубки в свое окончательное местоположение. Каждый нейрон образует дендриты и аксон; аксоны удлиняются и образуют ветви, концы которых образуют синаптические связи с выбранным набором целевых нейронов или мышечных волокон.

Человеческое эмбриональное развитие Развитие человеческого эмбриона на 18-й день, на стадии диска или щита, показано на трех четвертях (слева) и в поперечном сечении (справа). Encyclopdia Britannica, Inc.
Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.
Подпишитесь сегодня

Замечательные события этого раннего развития включают упорядоченную миграцию миллиардов нейронов, рост их аксонов (многие из которых широко распространяются по всему мозгу) и формирование тысяч синапсов между отдельными аксонами и их целевыми нейронами. Миграция и рост нейронов зависят, по крайней мере частично, от химических и физических воздействий.Растущие концы аксонов (называемые конусами роста), по-видимому, распознают и реагируют на различные молекулярные сигналы, которые направляют аксоны и нервные ветви к их соответствующим целям и устраняют те, которые пытаются синапсировать с неподходящими целями. Как только синаптическая связь установлена, клетка-мишень высвобождает трофический фактор (например, фактор роста нервов), который необходим для выживания нейрона, синапсирующегося с ней. Сигналы физического наведения участвуют в наведении контактов или миграции незрелых нейронов по каркасу из глиальных волокон.

В некоторых регионах развивающейся нервной системы синаптические контакты изначально не точны или стабильны, а затем следует упорядоченная реорганизация, включая устранение многих клеток и синапсов. Нестабильность некоторых синаптических связей сохраняется до тех пор, пока не наступит так называемый критический период, до которого влияние окружающей среды играет важную роль в правильной дифференцировке нейронов и в тонкой настройке многих синаптических связей. После критического периода синаптические связи становятся стабильными и вряд ли будут изменены под влиянием окружающей среды.Это говорит о том, что на определенные навыки и сенсорную деятельность можно повлиять во время развития (включая послеродовую жизнь), а для некоторых интеллектуальных навыков эта способность к адаптации предположительно сохраняется в зрелом и позднем возрасте.

.

нервная система | Определение, функции, структура и факты

Самый простой тип ответа — это прямая индивидуальная реакция на стимулы. Изменение окружающей среды — это стимул; реакция организма на это есть ответ. У одноклеточных организмов реакция является результатом свойства клеточной жидкости, называемого раздражительностью. У простых организмов, таких как водоросли, простейшие и грибы, реакция, при которой организм движется к стимулу или от него, называется таксисом.В более крупных и сложных организмах — тех, в которых реакция включает синхронизацию и интеграцию событий в различных частях тела, — механизм управления или контроллер расположен между стимулом и реакцией. В многоклеточных организмах этот контроллер состоит из двух основных механизмов, с помощью которых достигается интеграция — химической регуляции и нервной регуляции.

В химической регуляции вещества, называемые гормонами, производятся четко определенными группами клеток и либо диффундируют, либо переносятся кровью в другие области тела, где они действуют на клетки-мишени и влияют на метаболизм или индуцируют синтез других веществ.Изменения, возникающие в результате гормонального действия, выражаются в организме как влияние или изменения в форме, росте, воспроизводстве и поведении.

Растения реагируют на различные внешние раздражители, используя гормоны в качестве регуляторов системы «стимул-ответ». Направленные реакции движения известны как тропизмы и являются положительными, когда движение направлено к стимулу, и отрицательными, когда оно направлено в сторону от стимула. Когда семя прорастает, растущий стебель поворачивается вверх к свету, а корни поворачиваются вниз от света.Таким образом, стебель показывает положительный фототропизм и отрицательный геотропизм, тогда как корни показывают отрицательный фототропизм и положительный геотропизм. В этом примере свет и гравитация — это стимулы, а направленный рост — это реакция. Контроллеры — это определенные гормоны, синтезируемые клетками кончиков стеблей растений. Эти гормоны, известные как ауксины, диффундируют через ткани под верхушкой стебля и концентрируются по направлению к затемненной стороне, вызывая удлинение этих клеток и, таким образом, изгиб кончика к свету.Конечным результатом является поддержание растения в оптимальном состоянии с точки зрения освещения.

У животных, помимо химической регуляции через эндокринную систему, существует еще одна интегративная система, называемая нервной системой. Нервную систему можно определить как организованную группу клеток, называемых нейронами, специализирующихся на передаче импульса — возбужденного состояния — от сенсорного рецептора через нервную сеть к эффектору, участку, в котором происходит ответ.

Организмы, обладающие нервной системой, способны к гораздо более сложному поведению, чем организмы, у которых ее нет.Нервная система, специализирующаяся на проведении импульсов, позволяет быстро реагировать на раздражители окружающей среды. Многие реакции, опосредованные нервной системой, направлены на сохранение статус-кво или гомеостаза животного. Стимулы, которые имеют тенденцию перемещать или разрушать какую-либо часть организма, вызывают реакцию, которая приводит к уменьшению неблагоприятных эффектов и возвращению к более нормальному состоянию. Организмы с нервной системой также способны выполнять вторую группу функций, которые инициируют различные модели поведения.Животные могут проходить периоды исследовательского или аппетитного поведения, строительства гнезд и миграции. Хотя эти действия полезны для выживания вида, они не всегда выполняются индивидуумом в ответ на индивидуальную потребность или стимул. Наконец, выученное поведение может быть наложено как на гомеостатические, так и на инициирующие функции нервной системы.

Внутриклеточные системы

Все живые клетки обладают свойством раздражительности или отзывчивости на раздражители окружающей среды, которые могут влиять на клетку по-разному, вызывая, например, электрические, химические или механические изменения.Эти изменения выражаются в виде реакции, которая может быть высвобождением секреторных продуктов клетками железы, сокращением мышечных клеток, изгибом растительной стволовой клетки или биением плетистых «волосков» или ресничек ресничными клетками. .

Отзывчивость отдельной клетки может быть проиллюстрирована поведением относительно простой амебы. В отличие от некоторых других простейших, у амебы отсутствуют высокоразвитые структуры, которые участвуют в приеме стимулов, а также в производстве или проведении реакции.Однако амеба ведет себя так, как если бы у нее была нервная система, потому что общая отзывчивость ее цитоплазмы служит функциям нервной системы. Возбуждение, производимое стимулом, передается другим частям клетки и вызывает реакцию животного. Амеба переместится в область с определенным уровнем света. Его привлекают химические вещества, выделяемые пищей, и он проявляет реакцию при кормлении. Он также удаляется из области с ядовитыми химическими веществами и проявляет реакцию избегания при контакте с другими объектами.

.

нервной системы человека | Описание, развитие, анатомия и функции

Пренатальное и постнатальное развитие нервной системы человека

Практически все нервные клетки или нейроны генерируются во время пренатальной жизни, и в большинстве случаев после этого они не заменяются новыми нейронами. Морфологически нервная система впервые появляется примерно через 18 дней после зачатия с образованием нервной пластинки. Функционально он появляется с первым признаком рефлекторной активности во втором пренатальном месяце, когда стимуляция прикосновением к верхней губе вызывает реакцию отдергивания головы.Многие рефлексы головы, туловища и конечностей могут появиться на третьем месяце.

В процессе своего развития нервная система претерпевает значительные изменения, чтобы достичь своей сложной организации. Чтобы произвести примерно 1 триллион нейронов, присутствующих в зрелом мозге, в среднем в течение всей пренатальной жизни необходимо генерировать 2,5 миллиона нейронов в минуту. Это включает формирование нейронных цепей, содержащих 100 триллионов синапсов, поскольку каждый потенциальный нейрон в конечном итоге связан либо с выбранным набором других нейронов, либо с конкретными целями, такими как сенсорные окончания.Более того, синаптические связи с другими нейронами устанавливаются в определенных местах на клеточных мембранах целевых нейронов. Совокупность этих событий не считается исключительным продуктом генетического кода, поскольку генов просто не хватает, чтобы объяснить такую ​​сложность. Скорее, дифференцировка и последующее развитие эмбриональных клеток в зрелые нейроны и глиальные клетки достигается двумя наборами влияний: (1) специфическими подмножествами генов и (2) стимулами окружающей среды внутри и вне эмбриона.Генетические влияния имеют решающее значение для развития нервной системы в упорядоченной и временной последовательности. Клеточная дифференцировка, например, зависит от серии сигналов, регулирующих транскрипцию, процесса, в котором молекулы дезоксирибонуклеиновой кислоты (ДНК) дают начало молекулам рибонуклеиновой кислоты (РНК), которые, в свою очередь, выражают генетические сообщения, контролирующие клеточную активность. Влияния окружающей среды, происходящие от самого эмбриона, включают клеточные сигналы, которые состоят из диффундирующих молекулярных факторов ( см. Ниже Развитие нейронов).К факторам внешней среды относятся питание, сенсорный опыт, социальное взаимодействие и даже обучение. Все это важно для правильной дифференциации отдельных нейронов и тонкой настройки синаптических связей. Таким образом, нервная система требует непрерывной стимуляции в течение всей жизни для поддержания функциональной активности.

Развитие нейронов

На второй неделе пренатальной жизни быстро растущая бластоциста (связка клеток, на которую делится оплодотворенная яйцеклетка) превращается в так называемый эмбриональный диск.Эмбриональный диск вскоре приобретает три слоя: эктодерму (внешний слой), мезодерму (средний слой) и энтодерму (внутренний слой). Внутри мезодермы растет хорда, осевой стержень, который служит временным позвоночником. И мезодерма, и хорда выделяют химическое вещество, которое инструктирует и побуждает соседние недифференцированные клетки эктодермы утолщаться вдоль того, что станет дорсальной средней линией тела, образуя нервную пластинку. Нервная пластинка состоит из нервных клеток-предшественников, известных как нейроэпителиальные клетки, которые развиваются в нервную трубку ( см. Ниже Морфологическое развитие).Затем нейроэпителиальные клетки начинают делиться, диверсифицироваться и давать начало незрелым нейронам и нейроглии, которые, в свою очередь, мигрируют из нервной трубки в свое окончательное местоположение. Каждый нейрон образует дендриты и аксон; аксоны удлиняются и образуют ветви, концы которых образуют синаптические связи с выбранным набором целевых нейронов или мышечных волокон.

Человеческое эмбриональное развитие Развитие человеческого эмбриона на 18-й день, на стадии диска или щита, показано на трех четвертях (слева) и в поперечном сечении (справа). Encyclopdia Britannica, Inc.
Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.
Подпишитесь сегодня

Замечательные события этого раннего развития включают упорядоченную миграцию миллиардов нейронов, рост их аксонов (многие из которых широко распространяются по всему мозгу) и формирование тысяч синапсов между отдельными аксонами и их целевыми нейронами. Миграция и рост нейронов зависят, по крайней мере частично, от химических и физических воздействий.Растущие концы аксонов (называемые конусами роста), по-видимому, распознают и реагируют на различные молекулярные сигналы, которые направляют аксоны и нервные ветви к их соответствующим целям и устраняют те, которые пытаются синапсировать с неподходящими целями. Как только синаптическая связь установлена, клетка-мишень высвобождает трофический фактор (например, фактор роста нервов), который необходим для выживания нейрона, синапсирующегося с ней. Сигналы физического наведения участвуют в наведении контактов или миграции незрелых нейронов по каркасу из глиальных волокон.

В некоторых регионах развивающейся нервной системы синаптические контакты изначально не точны или стабильны, а затем следует упорядоченная реорганизация, включая устранение многих клеток и синапсов. Нестабильность некоторых синаптических связей сохраняется до тех пор, пока не наступит так называемый критический период, до которого влияние окружающей среды играет важную роль в правильной дифференцировке нейронов и в тонкой настройке многих синаптических связей. После критического периода синаптические связи становятся стабильными и вряд ли будут изменены под влиянием окружающей среды.Это говорит о том, что на определенные навыки и сенсорную деятельность можно повлиять во время развития (включая послеродовую жизнь), а для некоторых интеллектуальных навыков эта способность к адаптации предположительно сохраняется в зрелом и позднем возрасте.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *