Ультрафиолетовое излучение — Википедия
Ультрафиоле́товое излуче́ние (ультрафиолетовые лучи, УФ-излучение) — электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм (7,5·1014—3·1016Гц). Термин происходит от лат. ultra — сверх, за пределами и фиолетовый (violet). В разговорной речи может использоваться также наименование «ультрафиолет»[1].
История открытия
Иоганн Вильгельм Риттер, 1804 год
После того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и далее противоположного конца видимого спектра, с длинами волн короче, чем у излучения фиолетового цвета.
В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие учёные, включая Риттера, пришли к соглашению, что свет состоит из трёх отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента.
Идеи о единстве трёх различных частей спектра впервые появились лишь в 1842 году в трудах Александра Беккереля, Мачедонио Меллони и др.
Подтипы
Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделён на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348)[2] даёт следующие определения:
Наименование | Длина волны, нм | Частота, ПГц | Количество энергии на фотон, эВ | Аббревиатура |
---|---|---|---|---|
Ближний | 400—300 | 0,75—1 | 3,10—4,13 | NUV |
Ультрафиолет А, длинноволновой диапазон | 400—315 | 0,75—0,952 | 3,10—3,94 | UVA |
Средний | 300—200 | 1—1,5 | 4,13—6,20 | MUV |
Ультрафиолет B, средневолновой | 315—280 | 0,952—1,07 | 3,94—4,43 | UVB |
Дальний | 200—122 | 1,5—2,46 | 6,20—10,2 | FUV |
Ультрафиолет С, коротковолновой | 280—100 | 1,07—3 | 4,43—12,4 | UVC |
Экстремальный | 121—10 | 2,48—30 | 10,2—124 | EUV, XUV |
Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции. Но при относительно высоких яркостях, например, от диодов, глаз замечает фиолетовый свет, если излучение захватывает границу видимого света 400 нм.
Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.
Источники ультрафиолета
Ультрафиолетовое излучение Солнца
Природные источники
Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:
- от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)
- от высоты Солнца над горизонтом
- от высоты над уровнем моря
- от атмосферного рассеивания
- от состояния облачного покрова
- от степени отражения УФ-лучей от поверхности (воды, почвы)
Две ультрафиолетовые люминесцентные лампы, обе лампы излучают «длинные волны» (УФ-А), длина которых находится в диапазоне от 350 до 370 нм
Лампа ДРЛ без колбы — мощный источник ультрафиолетового излучения. Во время работы представляет опасность для зрения и кожи.
Искусственные источники
Благодаря созданию и совершенствованию искусственных источников УФ излучения (УФ ИИ), шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются ряд крупнейших электроламповых фирм и др. Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов. В отличие от осветительных, УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определённого ФБ процесса. Классификация искусственных УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определёнными УФ диапазонами спектра:
- Эритемные лампы были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»).
В 70-80 годах эритемные люминесцентные лампы (ЛЛ), кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтёров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.
Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения. Обладая хорошим «антирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305—315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жёсткой» УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ, которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путём легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.
- В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА. Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ-излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 230 Вт и длиной от 30 до 200 см.
- В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют «сезонозависимое расстройство» (Seasonal Affective Disorder, сокращённо SAD). Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдрому SAD подвержено ~ 10-12 % населения земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке — 17 %, на Аляске — 28 %, даже во Флориде — 4 %. По странам Северной Европы данные колеблются от 10 до 40 %.
В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечной недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественного света не только в видимой, но и в УФ области. Ряд зарубежных фирм включило ЛЛ полного спектра в свою номенклатуру, например, фирмы Osram и Radium выпускают подобные УФ ИИ мощностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристики которых практически совпадают. Эти лампы, естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации «светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу примерно на 30 % меньше, что неизбежно приведёт к увеличению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учётом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем».
- Весьма рациональное применение найдено УФ ЛЛ, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий.
Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.
Лазерные источники
Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокой интенсивности. Однако область ультрафиолета сложна для лазерной генерации, поэтому здесь не существует столь же мощных источников, как в видимом и инфракрасном диапазонах. Ультрафиолетовые лазеры находят своё применение в масс-спектрометрии, лазерной микродиссекции, биотехнологиях и других научных исследованиях, в микрохирургии глаза (LASIK), для лазерной абляции.
В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы (например, аргоновый лазер[3], азотный лазер[4], эксимерный лазер и др.), конденсированные инертные газы[5], специальные кристаллы, органические сцинтилляторы[6], либо свободные электроны, распространяющиеся в ондуляторе[7].
Также существуют ультрафиолетовые лазеры, использующие эффекты нелинейной оптики для генерации второй или третьей гармоники в ультрафиолетовом диапазоне.
В 2010 году был впервые продемонстрирован лазер на свободных электронах, генерирующий когерентные фотоны с энергией 10 эВ (соответствующая длина волны — 124 нм), то есть в диапазоне вакуумного ультрафиолета[8].
Воздействие
Деградация полимеров и красителей
Многие полимеры, используемые в товарах широкого потребления, деградируют под действием УФ-света. Проблема проявляется в исчезновении цвета, потускнении поверхности, растрескивании, а иногда и полном разрушении самого изделия. Скорость разрушения возрастает с ростом времени воздействия и интенсивности солнечного света. Описанный эффект известен как УФ-старение и является одной из разновидностей старения полимеров.
К чувствительным полимерам относятся термопластики, такие как, полипропилен, полиэтилен, полиметилметакрилат (органическое стекло), а также специальные волокна, например, арамидное волокно. Поглощение УФ приводит к разрушению полимерной цепи и потере прочности в ряде точек структуры.
Для предотвращения деградации в такие полимеры добавляются специальные вещества, способные поглощать УФ, что особенно важно в тех случаях, когда продукт подвергается непосредственному воздействию солнечного света.
Воздействие УФ на полимеры используется в нанотехнологиях, трансплантологии, рентгенолитографии и др. областях для модификации свойств (шероховатость, гидрофобность) поверхности полимеров. Например, известно сглаживающее действие вакуумного ультрафиолета (ВУФ) на поверхность полиметилметакрилата.
На здоровье человека
Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:
- Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
- УФ-B лучи (UVB, 280—315 нм)
- Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)
Практически весь УФ-C и приблизительно 90 % УФ-B поглощаются при прохождении солнечного излучения через земную атмосферу. Излучение из диапазона УФ-A поглощается атмосферой слабо, поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет УФ-A и в небольшой доле — УФ-B.
Несколько позже в работах О. Г. Газенко, Ю. Е. Нефёдова, Е. А. Шепелева, С. Н. Залогуева, Н. Е. Панфёрова, И. В. Анисимова указанное специфическое действие излучения было подтверждено в космической медицине. Профилактическое УФ-облучение было введено в практику космических полётов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ-излучения)». Оба документа являются надёжной базой дальнейшего совершенствования УФ-профилактики.
Действие на кожу
Блокировка ультрафиолетового излучения защитными кремами. Правое фото сделано в УФ лучах, крем нанесён в виде рисунка
Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам разной степени.
Ультрафиолетовое излучение приводит к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи, меланому кожи и её преждевременное старение. 86% случаев развития меланомы кожи вызвано черезмерным воздействием солнечных ультрафиолетовых лучей [9].
- Защита кожи
Эффективным средством защиты от ультрафиолетового излучения служит одежда и специальные кремы от загара c числом «SPF» больше 10. Это число означает коэффициент ослабления экспозиции. То есть число 30 означает, что можно пробыть под солнцем в совокупности 30 часов и получить такое же воздействие, как за один час, но без защиты. Для любителей загара это на практике означает, что использование кремов с большим числом «SPF» — это отсутствие загара вообще и пустое времяпровождение на пляже. Рациональным является понижение числа «SPF» по мере появления загара, ограничение времени пребывания под солнцем и паузы в принятии солнечных ванн, чем использование кремов с числом «SPF» больше 6.
- Типы защитных кремов
Синтетические кремы содержат минералы, отражающие ультрафиолет, такие как окись цинка, или сложные органические составы, полимеризующиеся на свету. Их коэффициент защиты достигает «SPF» 50.
Натуральные средства защиты известны ещё с Древнего Египта, это различные растительные масла. Их коэффициент защиты невелик: «SPF» не больше 6,5
Долгосрочный прогноз, какова вероятность рака кожи от самих синтетических защитных кремов по сравнению от воздействия солнечного света пока отсутствует.
Действие на глаза
Ультрафиолетовое излучение средневолнового диапазона (280—315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение — ожог роговицы (электроофтальмия). Это проявляется усиленным слезотечением, светобоязнью, отёком эпителия роговицы, блефароспазмом. В результате выраженной реакции тканей глаза на ультрафиолет глубокие слои (строма роговицы) не поражаются, так как человеческий организм рефлекторно устраняет воздействие ультрафиолета на органы зрения, поражённым оказывается только эпителий. После регенерации эпителия зрение, в большинстве случаев, восстанавливается полностью. Мягкий ультрафиолет длинноволнового диапазона (315—400 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет, но почти полностью задерживается хрусталиком, особенно у людей среднего и пожилого возраста[10]. Пациенты, которым имплантировали искусственный хрусталик ранних моделей, начинали видеть ультрафиолет; современные образцы искусственных хрусталиков ультрафиолет не пропускают (так делается для того, чтобы солнечный ультрафиолет не повреждал сетчатку). Ультрафиолет коротковолнового диапазона (100—280 нм) может проникать до сетчатки глаза. Так как ультрафиолетовое коротковолновое излучение обычно сопровождается ультрафиолетовым излучением других диапазонов, то при интенсивном воздействии на глаза гораздо ранее возникнет ожог роговицы (электроофтальмия), что исключит воздействие ультрафиолета на сетчатку по вышеуказанным причинам. В клинической офтальмологической практике основным видом поражения глаз ультрафиолетом является ожог роговицы (электроофтальмия).
- Защита глаз
- Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.
- Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).
- Фильтры для ультрафиолетовых лучей бывают твёрдыми, жидкими и газообразными. Например, обычное стекло непрозрачно при λ < 320 нм[11]; в более коротковолновой области прозрачны лишь специальные сорта стёкол (до 300—230 нм), кварц прозрачен до 110 нм, флюорит — до 120 нм. Для ещё более коротких волн нет подходящего по прозрачности материала для линз объектива, и приходится применять отражательную оптику — вогнутые зеркала. Однако для столь короткого ультрафиолета непрозрачен уже и воздух, который заметно поглощает ультрафиолет, начиная с 180 нм.
Сфера применения
Чёрный свет
На кредитных картах VISA при освещении УФ лучами появляется скрытое изображение
Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой части ультрафиолетовой области спектра (диапазон UVA), то есть за коротковолновой границей спектральной области, занимаемой видимым светом.
Для защиты документов от подделки их часто снабжают люминесцентными метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.
Ультрафиолетовое излучение, даваемое лампами «чёрного» света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека. Однако при использовании данных ламп в тёмном помещении существует некоторая опасность для глаз, связанная именно с незначительным излучением в видимом спектре: в темноте зрачок расширяется и больше излучения беспрепятственно попадает на сетчатку.
Обеззараживание ультрафиолетовым излучением
Ультрафиолетовые лампы используются для обеспложивания (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. Полной стерилизации от микроорганизмов при помощи УФ-излучения добиться невозможно — оно не действует на некоторые бактерии, многие виды грибов и прионы.[12]
В наиболее распространённых лампах низкого давления почти весь спектр излучения приходится на длину волны 253,7 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК).
Этот пик находится в районе длины волны излучения равной 265 нм[13], которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.
Относительная спектральная бактерицидная эффективность ультрафиолетового излучения — относительная зависимость действия бактерицидного ультрафиолетового излучения от длины волны в спектральном диапазоне 205—315 нм. При длине волны 265 нм максимальное значение спектральной бактерицидной эффективности равно единице.
Бактерицидное УФ-излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию. Ультрафиолетовые лампы с бактерицидным эффектом в основном используются в таких устройствах, как бактерицидные облучатели и бактерицидные рециркуляторы.
Обеззараживание воздуха и поверхностей
Кварцевая лампа, используемая для стерилизации в лаборатории
Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоёмов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.
Ультрафиолетовые лампы с бактерицидным эффектом в обиходе часто называют просто бактерицидными лампами. Кварцевые лампы также имеют бактерицидный эффект, но их название обусловлено не эффектом действия, как у бактерицидных лампах, а связано с материалом колбы лампы — кварцевым стеклом.
Дезинфекция питьевой воды
Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением.
Обеззараживание ультрафиолетовым (УФ) излучением — безопасный, экономичный и эффективный способ дезинфекции.
Ни озонирование, ни ультрафиолетовое излучение не обладают бактерицидным последействием, поэтому их не допускается использовать в качестве самостоятельных средств обеззараживания воды при подготовке воды для хозяйственно-питьевого водоснабжения, для бассейнов. Озонирование и ультрафиолетовое обеззараживаниe применяются как дополнительные методы дезинфекции, вместе с хлорированием, повышают эффективность хлорирования и снижают количество добавляемых хлорсодержащих реагентов.[14]
Принцип действия УФ-излучения. УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов. Следует отметить, что данный механизм распространяется на живые клетки любого организма в целом, именно этим обусловлена опасность жёсткого ультрафиолета.
Хотя по эффективности обеззараживания воды УФ обработка в несколько раз уступает озонированию, на сегодня использование УФ-излучения — один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объём обрабатываемой воды невелик.
В настоящее время в развивающихся странах, в регионах испытывающих недостаток чистой питьевой воды внедряется метод дезинфекции воды солнечным светом (SODIS), в котором основную роль в очистке воды от микроорганизмов играет ультрафиолетовая компонента солнечного излучения[15][16].
Ультрафиолетовое облучение
УФО — физиотерапевтическая процедура, облучение определённых участков человеческого тела (носоглотки, внутреннего уха, ран и т. д.) ультрафиолетовым излучением того или иного диапазона. Высокоэнергетическое коротковолновое УФ-излучение применяется для лечения острых воспалительных заболеваний кожи, гнойных воспалений и др. Длинноволновое излучение используется при лечении хронических заболеваний кожи.[17]
Химический анализ
УФ-спектрометрия
УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отражённого излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.
Анализ минералов
Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге рассказывает об этом так:
Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным «неземным» цветом вспыхивают и многие другие минералы, не содержащие никаких примесей.
Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-жёлтым.
— «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 стр.), с. 11
Качественный хроматографический анализ
Хроматограммы, полученные методом ТСХ, нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.
Ловля насекомых
Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.
Искусственный загар
При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D. В настоящее время популярны фотарии, которые в быту часто называют соляриями.
В реставрации
Один из главных инструментов экспертов — ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой плёнки — более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более тёмными пятнами проступают отреставрированные участки и кустарно переписанные подписи.
В полиграфии
Денежная купюра в ультрафиолетовом излучении
Ультрафиолетовое излучение применяется для:
- Сушки красок и лаков.
- Затвердевания зубных пломб.
- Защиты денежных купюр от подделки.
В биотехнологии
В качестве неионизирующего облучения для получения генетических мутаций. В связи с невысокой проникающей способностью воздействуют преимущественно на пыльцу. Вызывает особенно большое количество мутаций при облучении излучением с длиной волны, близкой к 265 нм, которое хорошо поглощается дезоксирибонуклеиновыми кислотами (ДНК).
См. также
Примечания
- ↑ Рябцев А. Н. Ультрафиолетовое излучение // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1998. — Т. 5. — С. 221. — 760 с. — ISBN 5-85270-101-7.
- ↑ ISO 21348 Process for Determining Solar Irradiances. Архивировано 23 июня 2012 года.
- ↑ В. К. Попов. Мощные эксимерные лазеры и новые источники когерентного излучения в вакуумном ультрафиолете // УФН. — 1985. — Т. 147. — С. 587—604.
- ↑ А. К. Шуаибов, В. С. Шевера. Ультрафиолетовый азотный лазер на 337,1 нм в режиме частых повторений // Украинский физический журнал. — 1977. — Т. 22, № 1. — С. 157—158.
- ↑ А. Г. Молчанов. Лазеры в вакуумной ультрафиолетовой и рентгеновской областях спектра // УФН. — 1972. — Т. 106. — С. 165—173.
- ↑ В. В. Фадеев. Ультрафиолетовые лазеры на органических сцинтилляторах // УФН. — 1970. — Т. 101. — С. 79—80.
- ↑ Ультрафиолетовый лазер // Научная сеть nature.web.ru
- ↑ Laser Twinkles in Rare Color (рус.), Science Daily (Dec. 21, 2010). Проверено 22 декабря 2010.
- ↑ Sun and UV facts and evidence (англ.), Cancer Research UK (24 March 2015). Проверено 21 апреля 2018.
- ↑ Бобух, Евгений О зрении животных. Проверено 6 ноября 2012. Архивировано 7 ноября 2012 года.
- ↑ Советская энциклопедия
- ↑ Л. Б. Борисов Медицинская микробиология, вирусология и иммунология. — МИА, 2005. — С. 154—156
- ↑ Р 3.5.1904-04 Использование ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях, Р (Руководство) от 04 марта 2004 года №3.5.1904-04. docs.cntd.ru. Проверено 15 февраля 2018.
- ↑ ГОСТ Р 53491.1-2009 Бассейны. Подготовка воды. Часть 1. Общие требования (DIN 19643-1:1997)
- ↑ Clean water at no cost, the SODIS way. // hindu.com. Проверено 17 июня 2012. Архивировано 23 июня 2012 года.
- ↑ New technology uses solar UV to disinfect drinking water. // phys.org. Проверено 17 июня 2012. Архивировано 23 июня 2012 года.
- ↑ Ультрафиолетовое облучение (УФО) — physiotherapy.ru.
Ультрафиолетовое излучение — Википедия
Ультрафиоле́товое излуче́ние (ультрафиолетовые лучи, УФ-излучение) — электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм (7,5·1014—3·1016Гц). Термин происходит от лат. ultra — сверх, за пределами и фиолетовый (violet). В разговорной речи может использоваться также наименование «ультрафиолет»[1].
История открытия
Иоганн Вильгельм Риттер, 1804 год
После того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и далее противоположного конца видимого спектра, с длинами волн короче, чем у излучения фиолетового цвета.
В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие учёные, включая Риттера, пришли к соглашению, что свет состоит из трёх отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента.
Идеи о единстве трёх различных частей спектра впервые появились лишь в 1842 году в трудах Александра Беккереля, Мачедонио Меллони и др.
Подтипы
Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделён на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348)[2] даёт следующие определения:
Наименование | Длина волны, нм | Частота, ПГц | Количество энергии на фотон, эВ | Аббревиатура |
---|---|---|---|---|
Ближний | 400—300 | 0,75—1 | 3,10—4,13 | NUV |
Ультрафиолет А, длинноволновой диапазон | 400—315 | 0,75—0,952 | 3,10—3,94 | UVA |
Средний | 300—200 | 1—1,5 | 4,13—6,20 | MUV |
Ультрафиолет B, средневолновой | 315—280 | 0,952—1,07 | 3,94—4,43 | UVB |
Дальний | 200—122 | 1,5—2,46 | 6,20—10,2 | FUV |
Ультрафиолет С, коротковолновой | 280—100 | 1,07—3 | 4,43—12,4 | UVC |
Экстремальный | 121—10 | 2,48—30 | 10,2—124 | EUV, XUV |
Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции. Но при относительно высоких яркостях, например, от диодов, глаз замечает фиолетовый свет, если излучение захватывает границу видимого света 400 нм.
Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.
Источники ультрафиолета
Ультрафиолетовое излучение Солнца
Природные источники
Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:
- от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)
- от высоты Солнца над горизонтом
- от высоты над уровнем моря
- от атмосферного рассеивания
- от состояния облачного покрова
- от степени отражения УФ-лучей от поверхности (воды, почвы)
Две ультрафиолетовые люминесцентные лампы, обе лампы излучают «длинные волны» (УФ-А), длина которых находится в диапазоне от 350 до 370 нм
Лампа ДРЛ без колбы — мощный источник ультрафиолетового излучения. Во время работы представляет опасность для зрения и кожи.
Искусственные источники
Благодаря созданию и совершенствованию искусственных источников УФ излучения (УФ ИИ), шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются ряд крупнейших электроламповых фирм и др. Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов. В отличие от осветительных, УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определённого ФБ процесса. Классификация искусственных УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определёнными УФ диапазонами спектра:
- Эритемные лампы были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»).
В 70-80 годах эритемные люминесцентные лампы (ЛЛ), кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтёров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.
Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения. Обладая хорошим «антирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305—315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жёсткой» УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ, которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путём легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.
- В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА. Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ-излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 230 Вт и длиной от 30 до 200 см.
- В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют «сезонозависимое расстройство» (Seasonal Affective Disorder, сокращённо SAD). Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдро
Мифы и факты об УФ-дезинфекции; виды бактерицидных приборов; меры безопасности. / Ультрафиолетовое излучение
Что такое УФ-излучение
Ультрафиолетовое излучение (УФ) — это часть электромагнитного спектра, подобно рентгеновскому излучению, радиоволнам или видимому свету. Из практических соображений оно разделено на следующие виды (λ, длина волн в нанометрах).
Ультрафиолетовый спектр разделяют на ультрафиолет-А (UV-A) с длиной волны 315-400 nm (нанометров), ультрафиолет-В (UV-B) — 280-315 nm и ультрафиолет-С (UV-С) — 100-280 nm, которые отличаются по проникающей способности и биологическому воздействию на организм.
Излучение UV-A источник загара, проходит сквозь роговой слой кожи.
Излучение UV-B используется в основном для терапии.
Излучение UV-С имеет сильный бактерицидный эффект, максимальный при длине волны 253,7 нанометра. Может вызвать ожог кожи и воспаление сетчатки глаза. Излучение волн короче 200 nm производит озон. Он вреден, поэтому в наших лампах используется специальное кварцевое (точнее увиолевое) стекло со специальным патентованным покрытием, благодаря которому озон практически не образуется (небольшое количество озона может выделиться только в первые 100 часов работы ламп). Диапазон преобладающей длины волн наших приборов 253,7 nm.
Действие ультрафиолетового излучения на клетку
Излучение с преобладающей частотой 253,7 нанометра наиболее эффективно для ультрафиолетовой дезинфекции. Именно эта длина ультирафиолетовой волны сильнее всего воздействует на самую чувствительную к действию ультрафиолетовых лучей функцию клетки — деление. Бактерицидный облучатель или рециркулятор «микробиологически» убивает клетки болезнетворных организмов. Ультрафиолет проникает в структуру ДНК вирусов, дрожжевых и иных болезнетворных бактерий и микроорганизмов и вызывает в ДНК изменения, которые нарушают жизнедеятельность клетки. Таким образом, УФ-излучение уничтожает ваших врагов изнутри.
Ультрафиолетовое излучение, характеристики, нормирование, воздействие на организм человека — Студопедия
Студопедия
Категории
Авто
Автоматизация
Архитектура
Астрономия
Аудит
Биология
Бухгалтерия
Военное дело
Генетика
География
Геология
Государство
Дом
Журналистика и СМИ
Изобретательство
Иностранные языки
Информатика
Искусство
История
Компьютеры
Кулинария
Культура
Лексикология
Литература
Логика
Маркетинг
Математика
Машиностроение
Медицина
Менеджмент
Металлы и Сварка
Механика
Музыка
Население
Образование
Охрана безопасности жизни
Охрана Труда
Педагогика
Политика
Право
Программирование
Производство
Промышленность
Психология
Радио
Регилия
Связь
Социология
Спорт
Стандартизация
Строительство
Технологии
Торговля
Туризм
Физика
Физиология
Философия
Финансы
Химия
Хозяйство
Черчение
Экология
Эконометрика
Экономика
Электроника
Юриспунденкция
Предметы
Авиадвигателестроения
Административное право
Административное право Беларусии
Алгебра
Архитектура
Безопасность жизнедеятельности
Введение в профессию «психолог»
Введение в экономику культуры
Высшая математика
Геология
Геоморфология
Гидрология и гидрометрии
Гидросистемы и гидромашины
История Украины
Культурология
Культурология
Логика
Маркетинг
Машиностроение
Медицинская психология
Менеджмент
Металлы и сварка
Методы и средства измерений
электрических величин
Мировая экономика
Начертательная геометрия
Основы экономической теории
Охрана труда
Пожарная тактика
Процессы и структуры мышления
Профессиональная психология
Психология
Психология менеджмента
Современные фундаментальные и
прикладные исследования
в приборостроении
Социальная психология
Социально-философская проблематика
Социология
Статистика
Теоретические основы информатики
Теория автоматического регулирования
Теория вероятности
Транспортное право
Туроператор
Уголовное право
Уголовный процесс
Управление современным производством
Физика
Физические явления
Философия
Холодильные установки
Экология
Экономика
История экономики
Основы экономики
Экономика предприятия
Экономическая история
Экономическая теория
Экономический анализ
Что такое ультрафиолетовый свет? | Живая наука
Ультрафиолет — это тип электромагнитного излучения, которое заставляет светиться плакаты с черным светом и вызывает летний загар и солнечные ожоги. Однако слишком сильное воздействие УФ-излучения повреждает живые ткани.
Электромагнитное излучение исходит от Солнца и передается волнами или частицами с разными длинами волн и частотами. Этот широкий диапазон длин волн известен как электромагнитный (ЭМ) спектр. Спектр обычно делится на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты.Обычные обозначения — это радиоволны, микроволны, инфракрасный (ИК), видимый свет, ультрафиолет (УФ), рентгеновские лучи и гамма-лучи.
Ультрафиолетовый (УФ) свет находится в диапазоне электромагнитного спектра между видимым светом и рентгеновскими лучами. Он имеет частоты примерно от 8 × 10 14 до 3 × 10 16 циклов в секунду, или герц (Гц), и длины волн от примерно 380 нанометров (1,5 × 10 -5 дюймов) до примерно 10 нм (4 × 10 −7 дюймов). Согласно «Руководству по ультрафиолетовому излучению» ВМС США, УФ обычно делится на три поддиапазона:
- UVA, или ближний УФ (315–400 нм)
- UVB, или средний УФ (280–315 нм)
- УФС, или дальний УФ (180–280 нм)
В руководстве говорится: «Излучение с длинами волн от 10 до 180 нм иногда называют вакуумом или экстремальным УФ.»Эти длины волн блокируются воздухом, и они распространяются только в вакууме.
Ионизация
УФ-излучение обладает достаточной энергией, чтобы разорвать химические связи. Из-за своей более высокой энергии УФ-фотоны могут вызывать ионизацию, процесс, в котором отрываются электроны Образовавшаяся вакансия влияет на химические свойства атомов и заставляет их образовывать или разрывать химические связи, которые в противном случае они бы не сделали. Это может быть полезно для химической обработки или может повредить материалы и живые ткани.Это повреждение может быть полезным, например, при дезинфекции поверхностей, но оно также может быть вредным, особенно для кожи и глаз, на которые наиболее неблагоприятно воздействуют более высокие энергии УФB и УФ-излучения.
УФ-эффекты
Большинство естественного УФ-излучения, с которым сталкиваются люди, исходит от солнца. Однако, по данным Национальной токсикологической программы (NTP), только около 10 процентов солнечного света — это ультрафиолетовое излучение, и только около одной трети этого солнечного света проникает в атмосферу и достигает земли. Из солнечной ультрафиолетовой энергии, которая достигает экватора, 95 процентов — это УФ-А и 5 процентов — УФ-В.Никакое измеримое УФС от солнечного излучения не достигает поверхности Земли, потому что озон, молекулярный кислород и водяной пар в верхних слоях атмосферы полностью поглощают ультрафиолетовые волны самой короткой длины. Тем не менее, «ультрафиолетовое излучение широкого спектра [UVA и UVB] является самым сильным и наиболее разрушительным для живых существ», согласно «13-му отчету о канцерогенных веществах» NTP.
Загар
Загар — это реакция на вредные лучи UVB. По сути, загар является результатом срабатывания естественного защитного механизма организма.Он состоит из пигмента под названием меланин, который вырабатывается клетками кожи, называемыми меланоцитами. Меланин поглощает ультрафиолетовый свет и рассеивает его в виде тепла. Когда организм ощущает повреждение от солнца, оно посылает меланин в окружающие клетки и пытается защитить их от новых повреждений. Пигмент вызывает потемнение кожи.
«Меланин — это естественный солнцезащитный крем», — сказал в интервью Live Science Гэри Чуанг, доцент дерматологии медицинского факультета Университета Тафтса. Однако продолжительное воздействие УФ-излучения может подавить защитные силы организма.Когда это происходит, возникает токсическая реакция, приводящая к солнечному ожогу. УФ-лучи могут повредить ДНК в клетках организма. Тело чувствует это разрушение и заливает эту область кровью, чтобы помочь процессу заживления. Также возникает болезненное воспаление. Обычно через полдня после чрезмерного пребывания на солнце характерный для загара вид красного лобстера начинает проявляться и ощущаться.
Иногда клетки с ДНК, мутировавшими под воздействием солнечных лучей, превращаются в проблемные клетки, которые не умирают, но продолжают размножаться в виде рака.«Ультрафиолетовый свет вызывает случайные повреждения ДНК и процесса восстановления ДНК, так что клетки приобретают способность избегать смерти», — сказал Чуанг.
Результат — рак кожи, наиболее распространенная форма рака в Соединенных Штатах. Люди, которые неоднократно получают солнечные ожоги, подвергаются гораздо более высокому риску. По данным Фонда рака кожи, риск самой смертельной формы рака кожи, называемой меланомой, удваивается для тех, кто получил пять или более солнечных ожогов.
Другие источники УФ-излучения
Разработан ряд искусственных источников для получения УФ-излучения.По данным Общества физиков здоровья, «к искусственным источникам относятся кабины для загара, черные фонари, лампы для отверждения, бактерицидные лампы, ртутные лампы, галогенные лампы, разрядные лампы высокой интенсивности, люминесцентные и лампы накаливания, а также некоторые типы лазеров».
Один из наиболее распространенных способов получения ультрафиолетового света — пропускание электрического тока через испаренную ртуть или другой газ. Лампы этого типа обычно используются в соляриях и для дезинфекции поверхностей. Лампы также используются в черном свете, который заставляет светиться флуоресцентные краски и красители.Светоизлучающие диоды (LED), лазеры и дуговые лампы также доступны в качестве источников УФ-излучения с различными длинами волн для промышленных, медицинских и исследовательских приложений.
Флуоресценция
Многие вещества, включая минералы, растения, грибы и микробы, а также органические и неорганические химические вещества, могут поглощать УФ-излучение. Поглощение заставляет электроны в материале переходить на более высокий энергетический уровень. Затем эти электроны могут вернуться на более низкий уровень энергии серией меньших шагов, излучая часть своей поглощенной энергии в виде видимого света.Материалы, используемые в качестве пигментов в красках или красителях, которые проявляют такую флуоресценцию, кажутся ярче под солнечным светом, потому что они поглощают невидимый УФ-свет и повторно излучают его в видимых длинах волн. По этой причине они обычно используются для знаков, защитных жилетов и других применений, в которых важна высокая видимость.
Флуоресценция также может использоваться для обнаружения и идентификации определенных минералов и органических материалов. Согласно Thermo Fisher Scientific, Life Technologies, «флуоресцентные зонды позволяют исследователям обнаруживать отдельные компоненты сложных биомолекулярных структур, таких как живые клетки, с исключительной чувствительностью и селективностью.«
В люминесцентных лампах, используемых для освещения,« ультрафиолетовое излучение с длиной волны 254 нм производится вместе с синим светом, который испускается, когда электрический ток проходит через пары ртути », — сообщает Университет Небраски.« Это ультрафиолетовое излучение. излучение невидимо, но содержит больше энергии, чем излучаемый видимый свет. Энергия ультрафиолетового света поглощается флуоресцентным покрытием внутри люминесцентной лампы и переизлучается в виде видимого света ». Подобные трубки без такого же флуоресцентного покрытия излучают ультрафиолетовый свет, который можно использовать для дезинфекции поверхностей, так как ионизирующее воздействие ультрафиолетового излучения может убить большинство бактерий.
В трубках черного света обычно используются пары ртути для получения длинноволнового УФА-света, вызывающего флуоресценцию некоторых красителей и пигментов. Стеклянная трубка покрыта темно-фиолетовым фильтрующим материалом, который блокирует большую часть видимого света, благодаря чему флуоресцентное свечение кажется более выраженным. Эта фильтрация не требуется для таких приложений, как дезинфекция.
УФ-астрономия
Помимо Солнца, существует множество небесных источников УФ-излучения. По данным НАСА, очень большие молодые звезды излучают большую часть своего света в ультрафиолетовых волнах.Поскольку атмосфера Земли блокирует большую часть этого УФ-излучения, особенно на более коротких длинах волн, наблюдения проводятся с использованием высотных аэростатов и орбитальных телескопов, оснащенных специализированными датчиками изображения и фильтрами для наблюдений в УФ-области электромагнитного спектра.
По словам Роберта Паттерсона, профессора астрономии в Университете штата Миссури, большинство наблюдений проводится с использованием устройств с зарядовой связью (ПЗС), детекторов, чувствительных к коротковолновым фотонам.Эти наблюдения могут определить температуру поверхности самых горячих звезд и выявить наличие промежуточных газовых облаков между Землей и квазарами.
Лечение рака
Хотя воздействие ультрафиолетового света может привести к раку кожи, некоторые кожные заболевания можно лечить с помощью ультрафиолета, согласно данным Cancer Research UK. В процедуре, называемой обработкой псораленом ультрафиолетовым светом (ПУВА), пациенты принимают лекарство или наносят лосьон, чтобы сделать кожу чувствительной к свету. Затем на кожу попадает ультрафиолетовый свет.ПУВА используется для лечения лимфомы, экземы, псориаза и витилиго.
Может показаться нелогичным лечить рак кожи тем же препаратом, который его вызвал, но ПУВА может быть полезной из-за воздействия ультрафиолетового света на производство клеток кожи. Он замедляет рост, который играет важную роль в развитии болезни.
Ключ к происхождению жизни?
Недавние исследования показывают, что ультрафиолетовый свет мог сыграть ключевую роль в возникновении жизни на Земле, особенно в происхождении РНК.В статье 2017 года в Astrophysics Journal авторы исследования отмечают, что красные карлики могут не излучать достаточно ультрафиолетового света для запуска биологических процессов, необходимых для образования рибонуклеиновой кислоты, необходимой для всех форм жизни на Земле. Исследование также предполагает, что это открытие может помочь в поисках жизни в другом месте Вселенной.
Дополнительные ресурсы
.
УФ-излучение
Принятие мер по защите от солнца — это ответственность круглый год. Защитите себя и других от солнца тенью, рубашкой или солнцезащитным кремом (SPF 15+) круглый год.
Ультрафиолетовое (УФ) излучение — это форма неионизирующего излучения, испускаемого солнцем и искусственными источниками, такими как солярии. Хотя он имеет некоторые преимущества для людей, включая создание витамина D, он также может быть опасен для здоровья.
- Наш естественный источник УФ излучения:
- Примерно искусственных источников УФ-излучения включают:
- Солярии
- Освещение на парах ртути (часто используется на стадионах и школьных спортзалах)
- Некоторые галогенные, люминесцентные лампы и лампы накаливания
- Некоторые типы лазеров
Какие бывают типы лучей УФ-излучения?
Ультрафиолетовое излучение
подразделяется на три основных типа: ультрафиолетовое излучение A (UVA), ультрафиолетовое излучение B (UVB) и ультрафиолетовое излучение C (UVC).Эти группы основаны на измерении их длины волны, которая измеряется в нанометрах (нм = 0,000000001 метр или 1 × 10-9 метров).
Тип волны | UVA | УВБ | UVC |
---|---|---|---|
Длина волны | 315-399 нм | 280-314 нм | 100-279 нм |
Уровень поглощения | Не поглощается озоновым слоем | В основном поглощается озоновым слоем, но некоторые достигают поверхности Земли | Полностью поглощается озоновым слоем и атмосферой |
Все ультрафиолетовое излучение C и большая часть UVB-излучения поглощается озоновым слоем Земли, поэтому почти все ультрафиолетовое излучение, получаемое на Земле, является UVA.И УФ-А, и УФ-В излучения могут повлиять на здоровье. Хотя излучение УФА слабее, чем УФВ, оно проникает глубже в кожу и остается более постоянным в течение года. Поскольку УФ-излучение поглощается озоновым слоем Земли, оно не представляет такой большой опасности.
Преимущества
Благоприятные эффекты УФ-излучения включают выработку витамина D, витамина, необходимого для здоровья человека. Витамин D помогает организму усваивать кальций и фосфор из пищи и способствует развитию костей.Всемирная организация здравоохранения (ВОЗ) рекомендует от 5 до 15 минут пребывания на солнце 2–3 раза в неделю.
Риски
- Солнечный ожог — признак кратковременного чрезмерного воздействия, в то время как преждевременное старение и рак кожи — побочные эффекты длительного воздействия ультрафиолета.
- Некоторые пероральные и местные лекарственные средства, такие как антибиотики, противозачаточные таблетки и продукты с перекисью бензоила, а также некоторые косметические средства могут повышать чувствительность кожи и глаз к УФ-излучению у всех типов кожи.
- УФ-облучение увеличивает риск потенциально слепящих глазных болезней, если не использовать средства защиты глаз.
- Чрезмерное воздействие УФ-излучения может привести к серьезным проблемам со здоровьем, включая рак. Рак кожи — самый распространенный вид рака в Соединенных Штатах. Двумя наиболее распространенными типами рака кожи являются базально-клеточный рак и плоскоклеточный рак. Как правило, они образуются на голове, лице, шее, руках и руках, потому что эти части тела наиболее подвержены УФ-излучению. Большинство случаев меланомы, самого смертоносного рака кожи, вызвано воздействием УФ-излучения.
Любой может заболеть раком кожи, но чаще встречается у людей, которые:
- Проводите много времени на солнце или получили солнечный ожог.
- Имеют светлую кожу, волосы и глаза.
- У кого-то из членов семьи рак кожи.
- Возраст старше 50 лет.
Солнцезащитный крем и солнцезащитные очки можно использовать для защиты от УФ-излучения.
Для защиты от УФ-излучения:
- Оставайтесь в тени, особенно в полдень.
- Носите одежду, закрывающую руки и ноги.
- Рассмотрите варианты защиты своих детей.
- Носите шляпу с широкими полями, чтобы закрашивать лицо, голову, уши и шею.
- Носите солнцезащитные очки с закругленными краями, которые блокируют лучи UVA и UVB.
- Используйте солнцезащитный крем с фактором защиты от солнца (SPF) 15 или выше, как для защиты от UVA, так и UVB.
- Избегайте загара в помещении. Загар в помещении особенно опасен для молодых пользователей; Люди, которые начинают загорать в помещении в подростковом или раннем взрослом возрасте, имеют более высокий риск развития меланомы.
Для получения дополнительной информации посетите веб-сайт CDC «Радиация и ваше здоровье».
.
Ультрафиолетовое излучение — Energy Education
Ультрафиолетовое излучение (УФ) — это вид лучистой энергии, очень похожий на свет, который мы видим, но с меньшей длиной волны и большей энергией. Он определяется как свет в спектре длин волн от 40 до 400 нанометров. [1] Это означает, что он находится между видимым светом и рентгеновскими лучами в электромагнитном спектре, как показано на рисунке 1.
Рисунок 1. Электромагнитный спектр. УФ находится между рентгеновскими лучами и видимым светом. [2]
Виды УФ и их эффекты
Существуют различные подкатегории УФ-излучения: вакуумное УФ, дальнее УФ, УФС, УФВ и УФА. Первые три из упомянутых почти никогда не встречаются на Земле, так как они поглощаются атмосферой. Последние два, UVB и UVA, встречаются очень часто.
UVA
Излучение
UVA имеет длины волн 320-400 нм, что означает, что оно имеет более низкую энергию, чем другие типы ультрафиолетового излучения, но все же может причинить вред людям.Первоначальное воздействие на кожу человека приводит к потемнению пигмента (загар), но чрезмерное воздействие может вызвать солнечный ожог, уплотнение кожи, образование катаракты и другие нежелательные эффекты. Это наиболее часто встречающееся УФ-излучение — на него приходится 95% УФ-излучения, падающего на Землю, — поскольку оно очень легко проникает в атмосферу. [1] [3] Свет UVA используется в соляриях и лампах для фототерапии.
УВБ
Излучение
UVB является более вредным из двух распространенных категорий УФ-излучения, поскольку оно обладает достаточной энергией, чтобы вызвать фотохимическое повреждение клеточной ДНК. [1] И UVA, и UVB необходимы для синтеза витамина D, но важно умеренно подвергаться их воздействию. Избыточное воздействие ультрафиолетового излучения В вызывает те же симптомы, что и УФА, но также известно, что оно является причиной рака кожи. Большая часть света UVB блокируется озоновым слоем. Известные дыры в озоновом слое являются поводом для беспокойства, так как это приведет к увеличению шансов заболеть раком кожи. [1] [4]
Защита от УФ-излучения
Фигура 2.Солнцезащитный крем помогает предотвратить чрезмерное воздействие УФ-излучения и необходим при контакте с этим излучением. [5]
УФ-излучение
невидимо для человеческого глаза, и воздействие на кожу не сразу, поэтому последствия передозировки могут очень легко подкрасться к кому-нибудь. Однако есть много способов защиты от УФ-излучения:
- Защита глаз очень важен при работе с источниками УФ-излучения, которые потенциально опасны для глаз.Солнцезащитные очки имеют различные встроенные средства защиты, поэтому их важно носить при работе с УФ-излучением.
- Защитная одежда — очень простое решение, которое может включать длинные брюки, шляпы и рубашки с длинными рукавами. Некоторые новые, солнцезащитные ткани более эффективно блокируют УФ-излучение.
- Солнцезащитный крем чрезвычайно важен при контакте с солнцем и оценивается по его солнцезащитному коэффициенту (SPF), причем более высокие значения SPF соответствуют лучшей защите, блокирующей почти 100% вредного УФ-излучения.
Существует «УФ-индекс», включенный в большинство прогнозов погоды, который помогает людям подготовиться к вредным лучам. У Environment Canada есть полезная таблица для понимания УФ-индекса, доступная здесь.
Для дальнейшего чтения
Список литературы
.
Simple English Wikipedia, бесплатная энциклопедия
Ультрафиолет — это часть электромагнитного спектра, показанная в левой части рисунка ниже черным цветом, потому что люди не могут видеть свет такой короткой длины волны (или высокой частоты). Многие животные, такие как насекомые, рептилии, крокодилы, саламандры и маленькие птицы, могут видеть вещи, которые отражают этот свет. UV — это общепринятое сокращение от ультрафиолета, которое в основном используется в технических контекстах.
Ультрафиолет превосходит видимый фиолетовый свет по частоте, длине волны и энергии.Его длины волн составляют примерно от 10 нанометров (нм) до 400 нанометров. Частота и длина волны тесно связаны. Уравнение, которое показывает эту связь: ν = c / λ. Сказать, что у чего-то короткая длина волны, все равно что сказать, что у этого есть высокая частота.
Ультрафиолет — это вид ионизирующего излучения. Он может повредить или убить клетки. Любое электромагнитное излучение (свет) с длиной волны короче 450 нм может вызвать проблемы. Таким образом, люди, которые живут в местах с большим количеством ультрафиолета, адаптировались, получив более темную кожу.Пигменты поглощают ультрафиолетовое излучение, поэтому оно не проходит через кожу, чтобы убить или повредить клетки внутри. Повреждение кожи ультрафиолетом называется «солнечным ожогом».
Фиолетовый свет и ультрафиолетовый свет различаются по длине волны, частоте и энергии квантов. Различия между ультрафиолетовым светом и рентгеновскими лучами также заключаются в длине волны, частоте и энергии квантов. В электромагнитном спектре ультрафиолет находится за пределами фиолетового, рентгеновские лучи — за пределами ультрафиолета, а гамма-лучи — за пределами рентгеновских лучей.
Электромагнитные волны с длиной волны от примерно 400 нанометров до примерно 10 нанометров обычно называют ультрафиолетовыми. Их характерная энергия фотонов составляет от 3 до 124 электронвольт.
Хотя воздух Земли прозрачен для широкого диапазона ультрафиолета, некоторое количество ультрафиолетового солнечного света на очень большой высоте поглощается озоновым слоем. Недавнее и продолжающееся разрушение озона на больших высотах, вызванное влиянием человека — в основном промышленными химическими веществами и воздушным транспортом — значительно увеличило количество ультрафиолетового света, достигающего поверхности Земли.Это, в свою очередь, увеличило риск рака кожи для человечества, и этот риск будет только увеличиваться со временем, если озоновый слой не будет лучше защищен.
Ультрафиолетовые волны с длиной волны менее 200 нанометров, рентгеновские лучи и гамма-лучи все вместе называются ионизирующим излучением, поскольку энергия в любом таком кванте света достаточно высока, чтобы «выбить» электрон из атома. Вот почему эти виды излучения опасны для жизни. Ультрафиолетовый свет подразделяется на три основных диапазона. УФ-С имеет самую короткую длину волны и опасен ионизирующим излучением.Азот и кислород поглощают УФ-С солнечного излучения. УФ-B имеет среднюю длину волны и менее опасен для живых существ. Озоновый слой Земли поглощает большую его часть. УФ-А от Солнца полностью проходит через атмосферу. Его длина волны почти равна длине волны видимого света, и многие животные могут его видеть, а люди — нет.
Обычное стекло не пропускает излучение, если его длина волны меньше 200 нанометров, поэтому оно действует как щит от более опасного диапазона ультрафиолетового света, но некоторые специальные виды стекла также не защищают, в том числе многие окна автомобилей.
Одно из применений ультрафиолетового излучения — это загар. Использование устройств для загара может вызвать рак кожи, потому что ультрафиолет проходит через кожу и вызывает разрушение клеток, вызывая солнечный ожог.
Из-за разрушительной силы ультрафиолетового света его можно использовать для уничтожения микробов. Солнечный свет — мощное дезинфицирующее средство.
Людям необходимо ультрафиолетовое излучение для преобразования холестерина в витамин D.
Ультрафиолетовая лампа — это лампа, излучающая в основном ультрафиолетовый свет.Эти бактерицидные лампы часто используются для уничтожения микробов (микробов). Они могут быть очень мощными, поэтому людям, которые работают вокруг них, когда они включены, возможно, потребуется надеть защитные очки и держать кожу закрытой, чтобы избежать травм.
В лаборатории, изображенной на фотографии, ультрафиолетовое освещение включается, когда рабочие уходят, так что все, что находится на поверхности стола, погибнет. Помимо ультрафиолетового света, который составляет большую часть света, производимого этими лампами, есть также немного фиолетового и синего света.Это позволяет людям узнать, когда включены ультрафиолетовые лампы.
.